The PNE/GOD/AuNPs@PNE/Au electrode exhibited a low Michaelis–Menten constant, a fast response to glucose, outstanding anti-interference ability and high sensitivity.
Novel photothermal nanoagents (PTNAs) with excellent photothermal performance, smart-responsive property, and biocompatibility are in urgent need for precise chemo-photothermal cancer therapy. Herein, polynorepinephrine nanoparticles (PNE NPs) with a high photothermal conversion efficiency (η) of 808 nm laser (67%), pH/thermal responsibility, and little to no long-term toxicity were synthesized from an endogenic neurotransmitter norepinephrine. Compared to their analogues, polydopamine NPs, a widely used PTNA, PNE NPs exhibited a higher η value (enhanced 1.63-fold) and better cellular uptake efficiency (enhanced 2.57-fold). After modifying with polyethylene glycol (PEG) and loading with doxorubicin (DOX), PNE−PEG@DOX could realize responsive release of DOX under either a cytolysosome pH microenvironment (pH 5.0) or an 808 nm laser irradiation, resulting in an enhanced chemotherapeutic efficacy of DOX. Besides, in vivo combination therapy leads to nearly complete ablation of tumor tissues, while no significant side effects were found in normal tissues. Hence, this intelligent and biocompatible nanoplatform based on PNE NPs holds great potential in promoting the clinic transformation of precise chemo-photothermal cancer therapy.
Homogenous poly(pyrrole-3-carboxylic acid) nanoparticles with high near-infrared absorption and abundant functional groups were fabricated using a facile reverse microemulsion method.
Tumor-specific FeOOH@PNE-Art nanoparticles were fabricated that showed high efficacy of photothermal-chemical combination therapy and low toxicity to normal tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.