Use of fipronil {5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-trifluoromethyl)sulfinyl]-1H-pyrazole-3-carbonitrile CAS 120068-37-3} topical pet products on dogs and cats introduces low level residues into residences. Distribution and fate studies of fipronil on pets and in residences were performed to evaluate potential determinants of human exposure. Fipronil, desulfinyl fipronil, fipronil sulfone and fipronil sulfide were measured on hair clippings and brushed hair. The derivatives usually represented <10% of fipronil applied. Cotton gloves worn over impervious nitrile gloves, cotton cloths placed indoors in locations frequented by pets, and cotton socks worn by residents as direct dosimeters collected fipronil and its derivatives listed above in low amounts during 4-week study periods. Subsequent acid hydrolysis urine biomonitoring did not reveal significant excretion of biomarkers at ppb levels. The human exposure potential of fipronil is low relative to levels of health concern.
The magnitude and distribution of cypermethrin from total release, over-the-counter foggers was studied in a test room and in residences to facilitate evaluation of regulatory exposure algorithms and new human exposure assessments based upon urine biomonitoring. Surface residue (SR) was evenly distributed in a small test room (3.6 mciro g cypermethrin/cm(2)) where thorough mixing of the aerosol occurred. In a residence SR was significantly affected by room size and distance from the fogger. Air levels in the residence were as high as 30 mciro g cypermethrin/cm(3) after 4.5 h. The availability of surface residues was measured with an automated surface cotton cloth wipe and ethyl acetate extraction. Only 5% of the SR was available from nylon carpet. Tile, wood and linoleum resulted in 30, 10, and 10% of SR being available, respectively. These data are used to estimate cypermethrin exposure of children and adults for comparison with existing regulatory reference dosages and exposure assessments based upon biomonitoring.
Pyrethroid insecticides widely used in forestry, agricultural, industrial, and residential applications have potential for human exposure. Short sample preparation time and sensitive, economical high-throughput assays are needed for biomonitoring studies that analyze a large number of samples. An enzyme-linked immunosorbent assay (ELISA) was used for determining 3-phenoxybenzoic acid (3-PBA), a general urinary biomarker of exposure to some pyrethroid insecticides. A mixed-mode solid-phase extraction reduced interferences from acid hydrolyzed urine and gave 110±6% recoveries from spiked samples. The method limit of quantification was 2 μg/L. Urine samples were collected from forestry workers that harvest pine cone seeds where pyrethroid insecticides were applied at ten different orchards. At least four samples for each worker were collected in a 1-week period. The 3-PBA in workers classified as high, low, or no exposure based on job analysis over all sampling days was 6.40± 9.60 (n=200), 5.27±5.39 (n=52), and 3.56±2.64 ng/mL (n=34), respectively. Pair-wise comparison of the differences in least squares means of 3-PBA concentrations among groups only showed a significant difference between high and no exposure. Although this difference was not significant when 3-PBA excretion was normalized by creatinine excretion, the general trend was still apparent. No significant differences were observed among days or orchards. This ELISA method using a 96-well plate was performed as a high-throughput tool for analyzing around 300 urine samples measured in triplicate to provide data for workers exposure assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.