Autografting is the gold-standard method for facial nerve repair with tissue loss. Its association with high-quality scaffolds and cell implants has disclosed distinct experimental outcomes. The aim of this study was to evaluate the functional and histological effects of bone marrow stem cells (BMSC) combined with polyglycolic acid tube (PGAt) in autografted rat facial nerves. After neurotmesis of the mandibular branch of the rat facial nerve, surgical repair consisted of nerve autografting (groups A-E) contained in pGAT (groups B-E), filled with basement membrane matrix (groups C-E) with undifferentiated BMSC (group D) or Schwann-like cells that had differentiated from BMSC (group E). Axon morphometrics and an objective compound muscle action potentials (CMAP) analysis were conducted. Immunofluorescence assays were carried out with Schwann cell marker S100 and anti-β-galactosidase to label exogenous cells. Six weeks after surgery, animals from either cell-containing group had mean CMAP amplitudes significantly higher than control groups. Differently from other groups, facial nerves with Schwann-like cell implants had mean axonal densities within reference values. This same group had the highest mean axonal diameter in distal segments. We observed expression of the reporter gene lacZ in nerve cells in the graft and distally from it in groups D and E. Group-E cells had lacZ coexpressed with S100. In conclusion, regeneration of the facial nerve was improved by BMSC within PGAt in rats, yet Schwann-like cells were associated with superior effects. Accordingly, groups D and E had BMSC integrated in neural tissue with maintenance of former cell phenotype for six weeks.
This is a noninvasive, easy, and highly reproducible method that contributes to an improvement of the techniques previously described and may contribute to future studies of the degeneration and regeneration of the facial nerve.
Post-traumatic lesions with transection of the facial nerve present limited functional outcome even after repair by gold-standard microsurgical techniques. Stem cell engraftment combined with surgical repair has been reported as a beneficial alternative. However, the best association between the source of stem cell and the nature of conduit, as well as the long-term postoperative cell viability are still matters of debate. We aimed to assess the functional and morphological effects of stem cells from human exfoliated deciduous teeth (SHED) in polyglycolic acid tube (PGAt) combined with autografting of rat facial nerve on repair after neurotmesis. The mandibular branch of rat facial nerve submitted to neurotmesis was repaired by autograft and PGAt filled with purified basement membrane matrix with or without SHED. Outcome variables were compound muscle action potential (CMAP) and axon morphometric. Animals from the SHED group had mean CMAP amplitudes and mean axonal diameters significantly higher than the control group (p < 0.001). Mean axonal densities were significantly higher in the control group (p = 0.004). The engrafted nerve segment resected 6 weeks after surgery presented cells of human origin that were positive for the Schwann cell marker (S100), indicating viability of transplanted SHED and a Schwann cell-like phenotype. We conclude that regeneration of the mandibular branch of the rat facial nerve was improved by SHED within PGAt. The stem cells integrated and remained viable in the neural tissue for 6 weeks since transplantation, and positive labeling for S100 Schwann-cell marker suggests cells initiated in vivo differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.