a b s t r a c tThe natural products are inexpensive, non-toxic, and have fewer side effects. Thus, their demand especially herbs based medical products, health products, nutritional supplements, cosmetics etc. are increasing. The quality of leafs defines the degree of excellence or a state of being free from defects, deficits, and substantial variations. Also, the diseases in leafs possess threats to the economic, and production status in the agricultural industry worldwide. The identification of disease in leafs using digital image processing, decreases the dependency on the farmers for the protection of agricultural products. So, the leaf disease detection and classification is the motivation of the proposed work. In this paper, a novel fuzzy set extended form neutrosophic logic based segmentation technique is used to evaluate the region of interest. The segmented neutrosophic image is distinguished by three membership elements: true, false and intermediate region. Based on segmented regions, new feature subset using texture, color, histogram and diseases sequence region are evaluated to identify leaf as diseased or healthy. Also, 9 different classifiers are used to monitor and demonstrate the discrimination power of combined feature effectiveness, where random forest dominates the other techniques. The proposed system is validated with 400 cases (200 healthy, 200 diseased). The proposed technique could be used as an effective tool for disease identification in leafs. A new feature set is promising and 98.4% classification accuracy is achieved.
The bit error rate expression of the binary phase‐shift keying modulation scheme has been derived in a frequency selective fading channel for the fractional Fourier transform (FRFT) based orthogonal frequency‐division multiplexing (OFDM) system in the presence of carrier frequency offset (CFO). The performance of the FRFT based OFDM system has been found to be better than FFT‐based OFDM at different values of FRFT angle parameter ‘α’.
In this paper, an X-shaped fractal antenna with defected ground structure (DGS) is presented for multiband and wideband applications. The X shape is used due to its simple design and DGS is utilized to achieve size reduction with multiband and wideband features in the frequency range of 1–7 GHz. The proposed structure is fabricated on FR4 substrate with 1.6 mm thickness. We have proposed two different antennas both are having X-shaped fractal patch with a slotted ground plane to have more impedance bandwidth and better return loss. Various parameters like scale factor, width of ground plane, number of slots with their dimensions and feed line length are optimized to have size reduction and for enhancing the performance of antenna. Reflection coefficient shows the multiband and wideband features of proposed antenna. One of the proposed antennas covers various applications like IEEE802.11y at 3.65 and 4.9 GHz, IEEE 802.11a at 5.4 GHz, 802.11P at 5.9 GHz. Other antenna covers applications like IEEE802.16 at 3.5 GHz; 5 cm band for amateur radio and satellite and future 5 G communication systems over 6 GHz. The antenna designing was done using CST software and simulation results were compared with experimental results (using E5071C network analyzer).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.