A B S T R A C TThe unplanned use of the resources of the caatinga biome has been provoking several environmental degradation processes, which interferes negatively in the physical and biological systems of the semi-arid region. Thus, the present study aimed to analyze the biophysical differences in areas of preserved and degraded caatinga, as well as irrigated and dry farming areas. Two images of the satellite Landsat 8 -Sensor OLI, corresponding to 05/22/2016 and 17/01/2017 were made. In which the reflectance, NDVI and NDWI calculations were applied. The results showed a difference in the values of NDVI and NDWI between the images of 2016 and 2017 according to the different types of vegetation. The areas of caatinga presented predominance of NDVI values from 0.4 to 0.6. Higher NDVI and NDWI characterized irrigated perimeters than in caatinga and dryland areas. Such differences between the analyzed days were the result of the absence and/or low amount of precipitation in the months before the imaging days. As for irrigated agriculture, which has a greater availability of water, than the influence on the nature of plants and in the moisture content present in the soil. Keywords: Semi-arid, biophysical parameters, vegetation. R E S U M OO uso não planejado dos recursos do bioma caatinga vem provocando diversos processos de degradação ambiental, os quais interferem negativamente sobre sistemas físico-naturais e biológicos da região semiárida. Sendo assim, o presente estudo teve como objetivo analisar as diferenças de parâmetros biofísicos em áreas de caatinga preservada e degradada, bem como das áreas de agricultura irrigada e sequeiro. Foram utilizadas duas imagens do satélite Landsat 8 -Sensor OLI, correspondentes aos dias 22/05/2016 e 17/01/2017. Nas quais foram aplicados os cálculos de reflectância, NDVI e NDWI. Os resultados mostraram uma diferença nos valores de NDVI e NDWI entre as imagens de 2016 e 2017 de acordo com os diferentes tipos de vegetação. As áreas de caatinga apresentaram predominância de valores de NDVI de 0,4 a 0,6. Os perímetros irrigados destacaram-se por apresentar NDVI e NDWI maiores do que nas áreas de caatinga e de sequeiro. Tais diferenças entre os dias analisados resultaram da ausência e/ou baixa quantidade de precipitação
Introduction: In this study, we aim to compare spatial statistic models to estimate the spatial distribution of Zika and Chikungunya infections in the city of Recife, Brazil. We also aim to establish the relationship between the diseases and the analyzed geographical conditions. Methods: The models were defined by combining three categories: type of spatial unit, calculation of the dependent variable format, and estimation methods (Geographical Weighted Regression [GWR] and Ordinary Least Square [OLS]). We identified the most accurate model to estimate the spatial distribution of the diseases. After selecting the model that provided best results, the relationship between the geographical conditions and the incidence of the diseases was analyzed. Results: It was observed that the matrix of 100 meters (as the spatial unit) showed the highest efficiency to estimate the diseases. The best results were observed in the models that utilized the kernel density estimation (as the calculation of the dependent variable). In all models, the GWR method showed the best results. By considering the OLS coefficient values, it was observed that all geographical conditions are related to the incidence of Zika and Chikungunya, while the GWR coefficient values showed where this relationship was more noticeable. Conclusions: The model that utilized the combination of the matrix of 100 meters, kernel density estimation (as the calculation of the dependent variable) and GWR method showed the highest efficiency in estimating the spatial distribution of the diseases. The coefficient values showed that all analyzed geographical conditions are related to the illnesses' incidence.
The brazilian region semiarid has as predominant vegetation the caatinga. The Caatinga Forest has one of its striking features its excellent adaptation to arid conditions. This exclusively brazilian ecosystem has a great biodiversity, but promote their preservation is a major obstacle to be overcome, one is the best knowledge of their chemical and physical processes. Thus the hyperspectral remote sensing can help enough in the characterization and monitoring of this ecosystem, where the hyperspectral data collected by these sensors can be transformed into different information biophysical aspects of vegetable toppings. In this work was used images hyperspectral of the Hyperion Satellite Earth Observing1 sensor (EO-1). The software utilized for analysis and the pre-processing of the image was the ENVI 4.4 software, where we generated the NDVI - vegetation index (Normalized Difference Vegetation Index) and the indexes of leaf pigments PRI (Photochemical Reflectance Index), SIPI (Structure Insensitive pigment Index) and CRI (1 Carotenoid Reflectance Index).The indices generated answered well to the structure of the cover and characteristics vegetation. Allowing this way, get more accurate data of vegetation indices and leaf pigments such, as chlorophyll and carotenoids.
Introdução: O novo coronavírus (SARS-CoV-2) chegou ao Brasil e as medidas para enfrentamento da disseminação estão sendo executadas. É importante a observação da estrutura hospitalar para potencializar tomadas de decisão e, nessa ação, o planejamento territorial deve ser incluído, dando o devido suporte. Objetivo: Analisar como o planejamento territorial pode auxiliar ao combate da COVID-19 em Pernambuco, tendo como base as informações vitais a saúde da população e as boas práticas existentes na literatura epidemiológica. Método: A metodologia envolveu o geoprocessamento junto à coleta de dados de leitos hospitalares e à população local nos municípios. Resultados: Dos 158 municípios, 33 possuem acima de 100 leitos. Quando se filtra apenas os leitos complementares, ou seja, leitos de complexidade mais elevada, observa-se a ausência desses leitos em aproximadamente 80,0% dos municípios. Além disso, a partir do planejamento territorial é possível verificar nos municípios, cidades referências para possíveis incentivos de saúde e criação de complexos sanitários além-capital. Conclusões:Aspectos como destinação de recursos à saúde, incentivos em novas estruturas hospitalares e implementação de políticas para o isolamento social podem ser levantados como opções possíveis ao enfrentamento do novo coronavírus, contudo, sabe-se que muitas prefeituras não têm caixa para fortalecer seu sistema de saúde em um curto período de tempo, medida esta que deve ser executada pelo governo estadual e/ou federal em ações conjuntas.Além do isolamento social, a utilização de estruturas hospitalares emergenciais pode ser uma alternativa temporária para frear o avanço da COVID-19 no interior e/ou desafogar o sistema de saúde na capital e seu entorno.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.