A method is reported for fabricating truly three-dimensional micro-photonic structures directly onto the end face of an optical fiber using the cross-linkable resist SU-8. This epoxide-based material is well suited for micro-device fabrication because it is photo-processed as a solid and the cross-linked material is mechanically robust, chemically resistant, and optically transparent. Yet, procedures commonly used to process SU-8, particularly spin-coating, are impractical when the intended fabrication substrate is the end-face of an optical fiber. A melt-reflow process was developed to prepare optical fibers having SU-8 resin deposited at controlled thickness on the fiber end-face. Multi-photon direct laser writing was then used to fabricate various refractive lenses, a compound lens system, and a woodpile photonic crystal within the resin on the end-face of the optical fiber. Data are presented that show how the refractive lenses can be used to alter the output of the optical fiber. This work opens a new path to low-profile integrated photonic devices.
Three-dimensional metallodielectric photonic crystals were created by fabricating a micron-scale polymeric template using multiphoton direct laser writing (DLW) in SU-8 and conformally and selectively coating the template with copper (Cu) via nanoparticle-nucleated electroless metallization. This process deposits a uniform metal coating, even deep within a lattice, because it is not directional like sputter-coating or evaporative deposition. Infrared reflectance spectra show that upon metallization the optical behavior transitions fully from a dielectric photonic crystal to that of a metal photonic crystal (MPC). After depositing 50 nm of Cu, the MPCs exhibit a strong plasmonic stop band having reflectance greater than 80% across the measured part of the band and reaching as high as 95% at some wavelengths. Numerical simulations match remarkably well with the experimental data and predict all dominant features observed in the reflectance measurements, showing that the MPCs are structurally well formed. These data show that the Cu-based process can be used to create high performance MPCs and devices that are difficult or impossible to fabricate by other means.
This work reports how the process of three-dimensional multi-photon direct laser writing (mpDLW) is affected when there is a small mismatch in refractive index between the material being patterned and the medium in which the focusing objective is immersed. Suspended-line microstructures were fabricated by mpDLW in the cross-linkable epoxide SU-8 as a function of focus depth and average incident power. It is found that even a small refractive index contrast of Δn = + 0.08 causes significant variation in feature width and height throughout the depth of the material. In particular, both the width and height of features can either increase or decrease with depth, depending upon how much the average incident laser power exceeds the threshold for writing. Vectorial diffraction theory is used to obtain insight into the origin of the effect and how to compensate for it. We demonstrate that varying the average focused power is a practical means for controlling the variation in feature size with focal depth.
Multiphoton lithography (MPL), Z-scan spectroscopy, and quantum chemical calculations were employed to investigate the order of multiphoton excitation that occurs when femtosecond laser pulses are used to excite two sulfonium photo-acid generators (PAGs) commonly used in photoresists based on the cross-linkable epoxide SU-8. The mole-fractions of the mono- and bis-sulfonium forms of these PAGs were determined for the commercially available photoresist SU-8 2075 and for the PAGs alone from a separate source. Both were found to contain similar fractions of the mono- and bis-forms, with the mono form present in the majority. Reichert's method was used to determine the solvatochromic strength of the SU-8 matrix, so that results obtained for the PAGs in SU-8 and in solution could be reliably compared. The PAGs were found to exhibit a minimal solvatochromic shift for a series of solvents that span across the solvatochromic strength of SU-8 itself. Sub-micron-sized features were fabricated in SU-8 2075 by MPL using amplified and continuous-wave mode-locked laser pulses. Analysis of the features as a function of average laser power, scan speed, and excitation wavelength shows that the PAGs can be activated by both two- and three-photon absorption (2PA and 3PA). Which activation mode dominates depends principally upon the excitation wavelength because the average laser powers that can be used with the photoresist are limited by practical considerations. The power must be high enough to effect sufficient cross-linking, yet not so high as to exceed the damage threshold of the material. When the laser pulses have a duration on the order of 100 fs, 3PA dominates at wavelengths near 800 nm, whereas 2PA becomes dominant at wavelengths below 700 nm. These findings are corroborated by open-aperture Z-scan measurements and quantum chemical calculations of the cross-sections for 2PA and 3PA as a function of wavelength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.