AlN thin films were grown in a N2 atmosphere onto a Si/Si3N4 substrate by pulsed laser ablation. We have varied the substrate temperature for the thin film growth, using X-ray Reflectometry (XRR) analysis, we have characterized the thickness and density of the thin layer and the interface roughness from the X-ray reflectivity profiles. Experimental data showed that the root-mean-square roughness was in the range of 0.3 nm. X-ray photoelectron spectroscopy (XPS) was employed to characterize the chemical composition of the films. These measurements detected carbon and oxygen contamination at the surface. In the highresolution X-ray photoelectron spectroscopy Al2p data, binding energies for Al-N and Al-O species were identified but no Al-Al species were present. In the N1s data, N-O species were not detected, but chemically bonded O was present in the films as Al-O species. Furthermore the value of optical energy gap, Eg was about 5.3 (± 0.1) eV. The composition varied with process conditions, and the nitrogen content decreased in AlN films processed above 500°C.
In this work we prepared graphene oxide nanostructures (GONE) in a liquid environment using pulsed laser ablation technique. We used for the synthesis Nd: YAG pulsed laser operatating at 1064 nm and 532 nm of wavelength, we study the effect of wavelength of the laser on the optical properties of Nanostructures (NE) synthesized. The aim was determining the optical bandgap and the characteristic peak related by bond transitions using the absorbance UV-Vis spectra. Both samples show high absorption in the ultraviolet region in the UV-Vis spectra. Using Tauc’s plot method we compute the bandgap energy for GONEs assuming indirect bandgap. In addition, we observe characteristic peak formation 1 hour after synthesized NPs at 256 nm for NPs prepared at 1064 nm and for NPs prepared at 532 nm the peak with less intensity is observed at a wavelength of 218 nm. The characteristic peak for both samples increase of intensity 24 hours after preparation.
<span>En este trabajo, se presentan los resultados preliminares de películas nanoestructuradas de nitruro de aluminio (AlN), que fueron depositadas con el método de deposición por láser pulsado (PLD). Al efecto, se utilizó un láser Nd:YAG (¿=1064nm), que impacto un blanco de aluminio de alta pureza (4N), en una atmósfera de nitrógeno. Se utilizaron como sustratos portaobjetos de vidrio, Si3N4 (100) y Si (100). El tiempo de deposición fue de 15 minutos a una fluencia del láser 7 J/cm2 y a temperatura ambiente. El espesor de las películas fue de 50 nm medido con un perfilómetro. Para estudiar la influencia del nitrógeno en las películas delgadas de AlN, se varió la presión del gas ambiente entre (3 y 4) mTorr. Igualmente se estudió la influencia del sustrato en las propiedades morfológicas de las películas delgadas de AlN. La nanoestructura de las películas se determinó mediante microscopia electrónica de barrido (SEM), y microscopia de fuerza atómica (AFM); la composición química, utilizando la técnica de espectroscopía de rayos X por dispersión de energía (EDX). La estructura cristalina fue estudiada con difracción de rayos X (DRX), para la película de 4 mTorr sobre un sustrato de Si3N4 (100), y se encontró una estructura policristalina con reflexiones de los planos (002), asociados a la estructura tipo wurtzita del AlN.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.