High-Performance Reconfigurable Computers (HPRCs) consist of one or more standard microprocessors tightly-coupled with one or more reconfigurable FPGAs. HPRCs have been shown to provide good speedups and good cost/performance ratios, but not necessarily ease of use, leading to a slow acceptance of this technology. HPRCs introduce new design challenges, such as the lack of portability across platforms, incompatibilities with legacy code, users reluctant to change their code base, a prolonged learning curve, and the need for a system-level Hardware/Software co-design development flow. This article presents the evolution and current work on TMD-MPI, which started as an MPI-based programming model for Multiprocessor Systems-on-Chip implemented in FPGAs, and has now evolved to include multiple X86 processors. TMD-MPI is shown to address current design challenges in HPRC usage, suggesting that the MPI standard has enough syntax and semantics to program these new types of parallel architectures. Also presented is the TMD-MPI Ecosystem, which consists of research projects and tools that are developed around TMD-MPI to further improve HPRC usability. Finally, we present preliminary communication performance measurements.We acknowledge the CMC/SOCRN, NSERC and Xilinx for the hardware, tools and funding provided for this project.
Abstract-High Performance Reconfigurable Computers (HPRCs) consist of one or more standard microprocessors tightly coupled with one or more reconfigurable FPGAs. HPRCs have been shown to provide good speedups and good cost/performance ratios, but not necessarily ease of use, leading to a slow acceptance of this technology. HPRCs introduce new design challenges, such as the lack of portability across platforms, incompatibilities with legacy code, users reluctant to change their code base, a prolonged learning curve, and the need for a system-level Hardware/Software co-design development flow. This paper presents the evolution and current work on TMD-MPI, which started as an MPI-based programming model for Multiprocessor Systems-on-Chip implemented in FPGAs, and has now evolved to include multiple X86 processors. TMD-MPI is shown to address current design challenges in HPRC usage, suggesting that the MPI standard has enough syntax and semantics to program these new types of parallel architectures. Also presented is the TMD-MPI Ecosystem, which consists of research projects and tools that are developed around TMD-MPI to further improve HPRC usability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.