In an effort to identify and characterize genes expressed during multicellular development ill Dictyostelium, we have undertaken a cDNA sequencing project. Using size-fractionated subsets of cDNA from the first finger stage, two sets of gridded libraries were constructed for cDNA sequencing. One, library S, consisting of 9984 clones, carries relatively short inserts, and the other, library L, which consists of 8448 clones, has longer inserts. We sequenced all the selected clones in library S from their 3'-ends, and this generated 3093 non-redundant, expressed sequence tags (ESTs). Among them, 246 ESTs hit known Dictyostelium genes and 910 showed significant similarity to genes of Dictyostelium and other organisms. For library L, 1132 clones were randomly sequenced and 471 non-redundant ESTs were obtained. In combination, the ESTs from the two libraries represent approximately 40% of genes expressed in late development, assuming that the non-redundant ESTs correspond to independent genes. They will provide a useful resource for investigating the genetic networks that regulate multicellular development of this organism.
Plasmid pKYM isolated from a Gramnegative bacterium encodes a Rep protein that is essential for plasmid replication. A comparison of Rep protein from pKYM to Rep proteins encoded by other plasmids shows that it has homology to Rep proteins of the pUBilO plasmid family from Gram-positive bacteria. These plasmids replicate by a rollingcircle mechanism in which a tyrosine residue in the Rep protein acts as the acceptor for the 5' end of the single-strand break introduced by the Rep protein. A Tyr-Phe substitution in the pKYM Rep protein abolishes its activity. Strand-specific single-stranded circular plasmid DNA can be recovered from the cells carrying pKYM and thus we propose that the plasmid pKYM replicates by a rolling-circle mechanism.
Countin, a cell-counting factor in Dictyostelium discoideum, is considered to limit the maximum size of the multicellular structure, because a countin null strain forms a huge fruiting body compared to that of the wildtype. A novel gene, countin2, that is highly homologous to countin (40% identity in amino acid sequence) was identified in the D. discoideum genome. The countin2 null strain formed a 1.7-fold higher number of the aggregates, resulting in smaller fruiting bodies compared with those of wild-type cells. Thus, the Countin2 protein is thought to limit the minimum size of the multicellular structure. The size and number of aggregates formed by a mixture of countin null and countin2 null strains were the same as those of the wild-type. These findings demonstrate that a combination of Countin and Countin2 proteins determines the appropriate size of the multicellular structure of D. discoideum.
We analyzed the spatial expression patterns of the genes involved in myosin function by in situ hybridization at the tipped aggregate and early culmination stages of Dictyostelium. Myosin heavy chain II mRNA was enriched in the anterior prestalk region of the tipped aggregates, whereas it disappeared from there and began to appear in both upper and lower cups of the early culminants. Similarly, mRNAs for essential light chain, regulatory light chain, myosin light chain kinase A, and myosin heavy chain kinase C were enriched in the prestalk region of the tipped aggregates. However, expression of these genes was distinctively regulated in the early culminants. These findings suggest the existence of mechanisms responsible for the expression of particular genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.