In this paper, we investigate the physical-layer security for a spatial modulation (SM) based indoor visible light communication (VLC) system, which includes multiple transmitters, a legitimate receiver, and a passive eavesdropper (Eve). At the transmitters, the SM scheme is employed, i.e., only one transmitter is active at each time instant. To choose the active transmitter, a uniform selection (US) scheme is utilized. Two scenarios are considered: one is with non-negativity and average optical intensity constraints, the other is with non-negativity, average optical intensity and peak optical intensity constraints. Then, lower and upper bounds on the secrecy rate are derived for these two scenarios. Besides, the asymptotic behaviors for the derived secrecy rate bounds at high signal-to-noise ratio (SNR) are analyzed. To further improve the secrecy performance, a channel adaptive selection (CAS) scheme and a greedy selection (GS) scheme are proposed to select the active transmitter. Numerical results show that the lower and upper bounds of the secrecy rate are tight. At high SNR, small asymptotic performance gaps exist between the derived lower and upper bounds. Moreover, the proposed GS scheme has the best performance, followed by the CAS scheme and the US scheme.
As a power and bandwidth efficient modulation scheme, the optical spatial modulation (SM) technique has recently drawn increased attention in the field of visible light communications (VLC). To guarantee the number of bits mapped by the transmitter's index at each timeslot is an integer, the number of transmitters (i.e., light-emitting diodes) in the SM based VLC system is often set be a power of two. To break the limitation on the required number of transmitters and provide more design flexibility, this paper investigates the SM based VLC with an arbitrary number of transmitters. Initially, a channel adaptive bit mapping (CABM) scheme is proposed, which includes three steps: bit mapping in space domain, bit mapping in signal domain, and the channel adaptive mapping. The proposed CABM scheme allows operation with an arbitrary number of transmitters, and is verified to be an efficient scheme through numerical results. Based on the CABM scheme, the information-theoretical aspects of the SM based VLC are analyzed. The theoretical expression of the mutual information is first analyzed. However, it is very hard to evaluate system performance. To obtain more insights, a lower bound of the mutual information is derived, which is in closedform. Both theoretical analysis and numerical results show that the gap between the mutual information and its lower bound is small. Finally, to further improve the system performance, the precoding scheme is proposed for the SM based VLC. Numerical results show that the system performance improves dramatically when using the proposed precoding scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.