Ga 2 O 3 -based solar-blind photodetectors have been extensively investigated for a wide range of applications. However, to date, a lot of research has focused on optimizing the epitaxial technique or constructing a heterojunction, and studies concerning surface passivation, a key technique in electronic and optoelectronic devices, are severely lacking. Here, we report an ultrasensitive metal−semiconductor− metal photodetector employing a β-Ga 2 O 3 homojunction structure realized by lowenergy surface fluorine plasma treatment, in which an ultrathin fluorine-doped layer served for surface passivation. Without inserting/capping a foreign layer, this strategy utilized fluorine dopants to both passivate local oxygen vacancies and suppress surface chemisorption. The dual effects have opposite impacts on device current magnitude (by suppressing metal/semiconductor junction leakage and inhibiting surfacechemisorption-induced carrier consumption) but dominate in dark and under illumination, respectively. By means of such unique mechanisms, the simultaneous improvement on dark and photo current characteristics was achieved, leading to the sensitivity enhanced by nearly 1 order of magnitude. Accordingly, the 15 min treated sample exhibited striking competitiveness in terms of comprehensive properties, including a dark current as low as 6 pA, a responsivity of 18.43 A/W, an external quantum efficiency approaching 1 × 10 4 %, a specific detectivity of 2.48 × 10 14 Jones, and a solar-blind/UV rejection ratio close to 1 × 10 5 . Furthermore, the response speed was effectively accelerated because of the reduction on metal/semiconductor interface trap states. Our findings provide a facile, economical, and contamination-free surface passivation technique, which unlocks the potential for comprehensively improving the performance of β-Ga 2 O 3 solar−blind metal− semiconductor−metal photodetectors.
We report a resistive switching memory structure based on silicon wafers by employing both materials and processing fully compatible with complementary metal-oxide semiconductor technology. A SiOx nanolayer was fabricated by direct plasma-oxidation of silicon wafers at room-temperature. Resistive switching behaviors were investigated on both p- and n-Si wafers, whereas self-rectifying effect was obtained in the Cu/SiOx/n-Si structure at low-resistance state. The self-rectifying effect was explained by formation of the Schottky barrier between the as-formed Cu filament and the n-Si. These results suggest a convenient and cost-efficient technical-route to develop high-density resistive switching memory for nowadays Si-based semiconductor industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.