The present work reports on the hydrogen gas detection properties of Pt-AlGaN/GaN high electron mobility transistor (HEMT) sensors with recessed gate structure. Devices with gate recess depths from 5 to 15 nm were fabricated using a precision cyclic etching method, examined with AFM, STEM and EDS, and tested towards H 2 response at high temperature. With increasing recess depth, the threshold voltage (V TH ) shifted from −1.57 to 1.49 V. A shallow recess (5 nm) resulted in a 1.03 mA increase in signal variation ( I DS ), while a deep recess (15 nm) resulted in the highest sensing response (S) of 145.8% towards 300 ppm H 2 as compared to reference sensors without gate recess. Transient measurements demonstrated reversible H 2 response for all tested devices. The response and recovery time towards 250 ppm gradually decreased from 7.3 to 2.5 min and from 29.2 to 8.85 min going from 0 nm to 15 nm recess depth. The power consumption of the sensors reduced with increasing recess depth from 146.6 to 2.95 mW.
Gas-sensing technology that is ubiquitous has progressively gained significance in our daily lives. There is a growing requirement for the real-time, dependable and low-concentration gases detection to monitor toxic and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.