Abstract-A low-power Content-Addressable-Memory (CAM) is introduced employing a new mechanism for associativity between the input tags and the corresponding address of the output data. The proposed architecture is based on a recently developed clustered-sparse-network using binary-weighted connections that on-average will eliminate most of the parallel comparisons performed during a search. Therefore, the dynamic energy consumption of the proposed design is significantly lower compared to that of a conventional low-power CAM design. Given an input tag, the proposed architecture computes a few possibilities for the location of the matched tag and performs the comparisons on them to locate a single valid match. A 0.13µm CMOS technology was used for simulation purposes. The energy consumption and the search delay of the proposed design are 9.5%, and 30.4% of that of the conventional NAND architecture respectively with a 3.4% higher number of transistors.
Abstract-Associative memories are structures that can retrieve previously stored information given a partial input pattern instead of an explicit address as in indexed memories. A few hardware approaches have recently been introduced for a new family of associative memories based on Sparse-Clustered Networks (SCN) that show attractive features. These architectures are suitable for implementations with low retrieval latency, but are limited to small networks that store a few hundred data entries. In this paper, a new hardware architecture of SCNs is proposed that features a new data-storage technique as well as a method we refer to as Selective Decoding (SD-SCN). The SD-SCN has been implemented using a similar FPGA used in the previous efforts and achieves two orders of magnitude higher capacity, with no error-performance penalty but with the cost of few extra clock cycles per data access.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.