Mempertahankan kepuasan pelanggan merupakan sebuah tantangan besar bagi perusahaan. Salah satu upaya yang dapat dilakukan adalah memberikan pelayanan terbaik terhadap pelanggan berdasarkan aspek yang paling berpengaruh. Pada penelitian ini dilakukan optimasi fitur Backward Elimination pada klasifikasi kepuasan pelanggan dengan algoritme k-NN dan Naïve Bayes. Penggunaan fitur Backward Elimination bertujuan meningkatkan akurasi dan mengurangi jumlah atribut yang kurang berpengaruh. Hasilnya, dapat diketahui bahwa pemodelan terbaik tanpa Backward Elimination adalah algoritme Naïve Bayes dengan akurasi 99.04% dan nilai AUC mencapai 1. Sedangkan penerapan Backward Elimination bekerja lebih optimal pada algoritme k-NN dengan peningkatan sebesar 33.74% menjadi 97.28% dengan AUC 0.996. Hal ini menunjukkan bahwa kinerja fitur Backward Elimination efektif dalam optimasi klasifikasi kepuasan pelanggan dan dapat mengurangi atribut yang kurang berpengaruh.
Phishing merupakan salah satu kejahatan siber yang bersifat mengancam dan menjebak seseorang dengan cara memancing korban untuk secara tidak langsung memberikan informasi kepada penjebak. Sebagian besar phishing menggunakan link yang mengarah pada website palsu untuk menjebak target. Phishing berpotensi menimbulkan kerugian baik dalam hal privacy, eksploitasi data, bahkan kerugian finansial. Jumlah website phishing yang merugikan pun tumbuh sangat cepat. Maka salah satu upaya yang dapat dilakukan yaitu melakukan penerapan klasifikasi untuk dapat mendeteksi website phishing. Penelitian ini bertujuan untuk mengetahui performa terbaik dalam penerapan algoritme klasifikasi yaitu Support Vector Machine, Decision Tree, Random Forest, dan Multilayer Perceptron. Berdasarkan hasil penelitian, performa terbaik terdapat pada algoritme Multilayer Perceptron dengan tingkat akurasi mencapai 93.15% dan nilai AUC 0.976.
Pengaruh internet erat dengan kehidupan masyarakat, terutama dalam menyediakan kemudahan akses informasi melalui website. Website digunakan oleh lembaga pendidikan khususnya kampus sebagai media promosi, media informasi, publikasi, dan pengenalan profil kampus. Pemanfaatan website secara optimal dapat memberikan pelayanan terbaik bagi pengunjung, sehingga kepercayaan dan citra positif terhadap kampus pun dapat meningkat. Penting bagi pengelola untuk memperhatikan juga meningkatkan kualitas website, salah satunya dengan menerapkan web usage mining. Web usage mining bermanfaat untuk menggali informasi yang didapatkan dari web, dengan memahami data aktivitas pengunjung agar dapat mengetahui kelebihan dan kekurangan website. Penelitian ini bertujuan untuk mengetahui serta melakukan analisis pola akses pengunjung website Unsika dengan web usage mining menggunakan Association Rule. Algoritma yang digunakan adalah Modified Apriori dengan teknik hashing. Teknik hashing digunakan untuk mengurangi waktu pencarian dengan menyimpan data ke dalam array sebagai key dan value pada saat proses iterasi. Berdasarkan hasil penelitian, dengan nilai minimum support 2 dan minimum confidence 65%, rule yang terbentuk yaitu sebanyak 27 dengan nilai support tertinggi 2.20%, nilai confidence tertinggi adalah 100%, dan lift ratio tertinggi sebesar 91.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.