An ultrasensitive, simple, and fast immunoassay for biotin-peptide detection using gold nanoparticles conjugated with antibodies has been developed. Biotin was covalently attached to a peptide and the biotin-peptide bound on a nitrocellulose membrane. Antibody-coated gold nanoparticles bound to the biotin-peptide formed red dots. With this method, 100 amol of the biotin-peptide was detected and no immunogold was bound to the membrane in the absence of biotin. The relative intensity of each dot was scored using Quantity One, a quantitative analysis software program. The linear working range of this assay was between 1 pmol and 1 micromol. The assay sensitivity was increased by silver enhancement to 100 zmol, and the linear working range was between 100 zmol and 100 fmol. This assay can be extended to detect target molecules, such as dioxin, digoxin, mercury, and so on, with matched antibodies and has potential broad applications in immunoassay.
Low threshold and widely tunable InAs/GaAs quantum-dot lasers are implemented with grating-coupled external-cavity arrangement. Throughout the tuning range of 130 nm, from 1160 to 1290 nm, the threshold current density is not more than 0.9 kA/cm2 and no noticeable threshold jump is observed. For a shorter-cavity device, the injection current is kept at a record low value of 90 mA but the tuning range is further extended to 150 nm, from 1143 to 1293 nm. The effect of cavity length on the tuning characteristics is discussed and the strategy for design and optimization of multilayer quantum-dot structure is also proposed.
Control and the selection of the ground state emission and/or the excited state emission of an InAs quantum dot laser have been demonstrated. By controlling the currents injected into each section of a two-section cavity, switching between the ground state emission and the excited state emission with a separation of 100nm was achieved. With a constant total current, either ground state lasing (∼1.3μm), excited state lasing (∼1.2μm), or dual state lasing can be obtained simply by adjusting the current ratio between the two sections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.