Device performance and in particular device stability for blue perovskite light-emitting diodes (PeLEDs) remain considerable challenges for the whole community. In this manuscript, we conceive an approach by tuning the ‘A-site’ cation composition of perovskites to develop blue-emitters. We herein report a Rubidium-Cesium alloyed, quasi-two-dimensional perovskite and demonstrate its great potential for pure-blue PeLED applications. Composition engineering and in-situ passivation are conducted to further improve the material’s emission property and stabilities. Consequently, we get a prominent film photoluminescence quantum yield of around 82% under low excitation density. Encouraged by these findings, we finally achieve a spectra-stable blue PeLED with the peak external quantum efficiency of 1.35% and a half-lifetime of 14.5 min, representing the most efficient and stable pure-blue PeLEDs reported so far. The strategy is also demonstrated to be able to generate efficient perovskite blue emitters and PeLEDs in the whole blue spectral region (from 454 to 492 nm).
Engineered nanoparticles, due to their unique electrical, mechanical, and catalytic properties, are presently found in many commercial products and will be intentionally or inadvertently released at increasing concentrations into the natural environment. Metal- and metal oxide-based nanomaterials have been shown to act as mediators of DNA damage in mammalian cells, organisms, and even in bacteria, but the molecular mechanisms through which this occurs are poorly understood. For the first time, we report that copper oxide nanoparticles induce DNA damage in agricultural and grassland plants. Significant accumulation of oxidatively modified, mutagenic DNA lesions (7,8-dihydro-8-oxoguanine; 2,6-diamino-4-hydroxy-5-formamidopyrimidine; 4,6-diamino-5-formamidopyrimidine) and strong plant growth inhibition were observed for radish (Raphanus sativus), perennial ryegrass (Lolium perenne), and annual ryegrass (Lolium rigidum) under controlled laboratory conditions. Lesion accumulation levels mediated by copper ions and macroscale copper particles were measured in tandem to clarify the mechanisms of DNA damage. To our knowledge, this is the first evidence of multiple DNA lesion formation and accumulation in plants. These findings provide impetus for future investigations on nanoparticle-mediated DNA damage and repair mechanisms in plants.
Small (6-10 nm) functionalized gold nanoparticles (AuNPs) featuring different, well-defined surface charges were used to probe the uptake and distribution of nanomaterials in terrestrial plants, including rice, radish, pumpkin, and perennial ryegrass. Exposure of the AuNPs to plant seedlings under hydroponic conditions for a 5-day period was investigated. Results from these studies indicate that AuNP uptake and distribution depend on both nanoparticle surface charge and plant species. The experiments show that positively charged AuNPs are most readily taken up by plant roots, while negatively charged AuNPs are most efficiently translocated into plant shoots (including stems and leaves) from the roots. Radish and ryegrass roots generally accumulated higher amounts of the AuNPs (14-900 ng/mg) than rice and pumpkin roots (7-59 ng/mg). Each of the AuNPs used in this study were found to accumulate to statistically significant extents in rice shoots (1.1-2.9 ng/mg), while none of the AuNPs accumulated in the shoots of radishes and pumpkins.
Reduced-dimensional (quasi-2D) perovskite materials are widely applied for perovskite photovoltaics due to their remarkable environmental stability. However, their device performance still lags far behind traditional three dimensional perovskites, particularly high open circuit voltage (V oc) loss. Here, inhomogeneous energy landscape is pointed out to be the sole reason, which introduces extra energy loss, creates band tail states and inhibits minority carrier transport. We thus propose to form homogeneous energy landscape to overcome the problem. A synergistic approach is conceived, by taking advantage of material structure and crystallization kinetic engineering. Accordingly, with the help of density functional theory guided material design, (aminomethyl) piperidinium quasi-2D perovskites are selected. The lowest energy distribution and homogeneous energy landscape are achieved through carefully regulating their crystallization kinetics. We conclude that homogeneous energy landscape significantly reduces the Shockley-Read-Hall recombination and suppresses the quasi-Fermi level splitting, which is crucial to achieve high V oc .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.