The present studies were designed to evaluate supplemental grape seed extract (GSE) and vitamin E supplements on lipid peroxidation, on antioxidant systems and peripheral blood lymphocytes in rats exposed to x-rays. Three groups of rats were investigated: a control group (CG) received intraperitoneal (i.p.) physiological serum 1 mL/day (n=10), i.p.; a vitamin E group (VG) received 50 mg/kg/day (n=10); an i.p. grape seed extract group received 50 mg/kg/day (n=10). Four weeks later, a 6 Gy radiation dose was given to the rats. Blood samples were taken 24 h later after irradiation and lymphocyte, malondialdehyde (MDA), reduced glutathione (GSH), nitrate, nitrite, reduced ascorbic acid, retinol, beta-carotene and ceruloplasmin concentrations were analysed. The levels of GSH (p<0.05), retinol (p<0.001), beta-carotene (p<0.05) and ceruloplasmin concentration (p<0.001) in the GSE group were found to be higher than in the control group but the level of MDA (p<0.001) and nitrite concentration (p<0.05) in rats supplemented with GSE were found to be lower than in the control group. The results indicate that GSE enhanced the antioxidant status and decreased the incidence of free radical-induced lipid peroxidation in blood samples of rats exposed to x-radiation. The antioxidant effect of GSE given to animals was more effective than vitamin E administered before whole-body irradiation in rats.
Radiotherapy is one of the most common therapies for treating human cancers. Several studies have indicated that irradiation induces reactive oxygen species (ROS), which play an important role in radiation damage of the cell. It has been shown that Nigella sativa L. (NS) and reduced glutathione (GSH) have both an antiperoxidative effect on different tissues and a scavenger effect on ROS. The purpose of this study was to determine the antioxidant and radio-protective roles of NS and GSH against irradiation-induced oxidative injury in an experimental model. The NS group was administrated NS (1 mL/kg body weight), the GSH group was injected GSH (150 mg/kg body weight) and the control group was given physiologic saline solution (1 mL/kg body weight) for 30 consecutive days before exposure to a single dose of 6 Gy of radiation. Animals were sacrificed after irradiation. Malondialdehyde, nitrate, nitrite (oxidative stress markers) and ascorbic acid, retinol, beta-carotene, GSH and ceruloplasmin (nonenzymatic antioxidant markers) levels and peripheral blood lymphocytes were measured in all groups. There were statistically significant differences between the groups for all parameters (P < 0.05). Whole-body irradiation caused a significant increase in blood malondialdehyde, nitrate and nitrite levels. The blood oxidative stress marker levels in irradiated rats that were pretreated with NS and GSH were significantly decreased; however, non-enzymatic antioxidant levels were significantly increased. Also, our results suggest that NS and GSH administration prior to irradiation prevent the number of alpha-naphthyl acetate esterase peripheral blood T lymphocytes from declining. These results clearly show that NS and GSH treatment significantly antagonize the effects of radiation. Therefore, NS and GSH may be a beneficial agent in protection against ionizing radiation-related tissue injury.
This study was aimed at developing a hydrophilic radioligand as an antiestrogen drug derivative to be used for imaging breast tumors. Toremifene [TOR; 4-chloro-1,2-diphenyl-1-(4-(2-(N,N-di-methylamino)ethoxy)phenyl)-1-butene, as citrate salt] was selected as the starting material to be derived, since it has been used extensively as an antiestrogen drug for treatment and prevention of human breast cancer. An antiestrogen drug derivative, TOR attached to diethylenetriamine pentaacetic acid (DTPA), was synthesized by two experimental treatments, including a purification and a reaction step. We described the synthesis of this TOR derivative, (3Z)-4-{4-[2-(dimethylamino) ethoxy] phenyl}-3,4-diphenylbut-3-en-1-ylN,N-bis[2-(2,6-dioxomorpholin-4-yl)ethyl]glycinate (TOR-DTPA), in detail. Mass spectroscopy confirmed the expected structures. TOR-DTPA was labeled with technetium-99m ((99m)Tc), using stannous chloride (SnCl(2)) as the reducing agent. Biodistribution studies were performed on female Albino Wistar rats. Quality controls, radiochemical yield, and stability studies were done utilizing high-performance liquid chromatography, radioelectrophoresis, thin-layer chromatography, and thin-layer radiochromatography methods. The synthesized compound was found to be hydrophilic and anionic, with high stability for the duration of the testing period in vitro. The results indicated that the radiolabeled compound has estrogen-receptor specificity, especially for the breast tissue. It is highly possible that this compound could be used for imaging breast tumors as a novel technetium-labeled hydrophilic estrogen derivative radioligand.
The aim of this study was to investigate the effect of three saponin-containing plant species extracts (Aesculuc hippocastanum L. seed extract [AHE], Medicago sativa L. extract [MSE] and Spinacia oleracea L. extract [SOE]) on lipid peroxidation and on antioxidant systems in rats exposed to X-rays (XR). The rats were divided into three categories. The first category served as controls and received only a standard diet. The second category served as the radiation group and received 5 and 10 Gy XR dose. The third category (XR+extract-treated) received plant extracts (25.0 or 50.0 mg kg(-1) live weight) and 5 or 10 Gy XR dose. Blood samples were analyzed for their content of malondialdehyde (MDA), reduced glutathione (GSH), plasma vitamin C, beta-carotene and retinol. In animals receiving XR, the plasma MDA (P < 0.001) value significantly increased but the level of GSH (P < 0.01), vitamin C (P < 0.001), retinol and beta-carotene (P < 0.001) decreased significantly with increasing XR doses. In the XR+extract-treated groups, the concentrations of MDA increased significantly with increasing radiation but their concentrations decreased significantly with increasing extract concentrations. Plasma concentrations of GSH, beta-carotene, retinol and vitamin C in XR+extract-treated groups decreased significantly with increasing XR dose but their concentrations increased with increasing extract doses. Further, comparison of blood samples of XR+extract-treated groups with those from the control group showed that GSH, beta-carotene, retinol and vitamin C values increased significantly but that MDA values decreased significantly. The results showed that all extracts have enhanced the antioxidant status and decreased the incidence of free radical-induced lipid peroxidation in blood samples of rats exposed to XR. However, the antioxidant effect of AHE-administered animals was more effective than that of MSE- and SOE-administered whole-body XR rats. We conclude that the supplementation with saponin-containing extracts may serve to reinforce the antioxidant systems, thus having protective effect against cell damage by XR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.