Zinc oxynitride (ZnON) semiconductors are suitable for high performance thin-film transistors (TFTs) with excellent device stability under negative bias illumination stress (NBIS). The present work provides a first approach on the optimization of electrical performance and stability of the TFTs via studying the resonant interaction between anions or vacancies in ZnON. It is found that the incorporation of nitrogen increases the concentration of nitrogen vacancies (VN
+s), which generate larger concentrations of free electrons with increased mobility. However, a critical amount of nitrogen exists, above which electrically inactive divacancy (VN-VN)0 forms, thus reducing the number of carriers and their mobility. The presence of nitrogen anions also reduces the relative content of oxygen anions, therefore diminishing the probability of forming O-O dimers (peroxides). The latter is well known to accelerate device degradation under NBIS. Calculations indicate that a balance between device performance and NBIS stability may be achieved by optimizing the nitrogen to oxygen anion ratio. Experimental results confirm that the degradation of the TFTs with respect to NBIS becomes less severe as the nitrogen content in the film increases, while the device performance reaches an intermediate peak, with field effect mobility exceeding 50 cm2/Vs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.