In the present study, novel dry-contact sensors for measuring electro-encephalography (EEG) signals without any skin preparation are designed, fabricated by an injection molding manufacturing process and experimentally validated. Conventional wet electrodes are commonly used to measure EEG signals; they provide excellent EEG signals subject to proper skin preparation and conductive gel application. However, a series of skin preparation procedures for applying the wet electrodes is always required and usually creates trouble for users. To overcome these drawbacks, novel dry-contact EEG sensors were proposed for potential operation in the presence or absence of hair and without any skin preparation or conductive gel usage. The dry EEG sensors were designed to contact the scalp surface with 17 spring contact probes. Each probe was designed to include a probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible substrate using a one-time forming process via an established injection molding procedure. With these 17 spring contact probes, the flexible substrate allows for high geometric conformity between the sensor and the irregular scalp surface to maintain low skin-sensor interface impedance. Additionally, the flexible substrate also initiates a sensor buffer effect, eliminating pain when force is applied. The proposed dry EEG sensor was reliable in measuring EEG signals without any skin preparation or conductive gel usage, as compared with the conventional wet electrodes.
A novel dry foam-based electrode for long-term EEG measurement was proposed in this study. In general, the conventional wet electrodes are most frequently used for EEG measurement. However, they require skin preparation and conduction gels to reduce the skin-electrode contact impedance. The aforementioned procedures when wet electrodes were used usually make trouble to users easily. In order to overcome the aforesaid issues, a novel dry foam electrode, fabricated by electrically conductive polymer foam covered by a conductive fabric, was proposed. By using conductive fabric, which provides partly polarizable electric characteristic, our dry foam electrode exhibits both polarization and conductivity, and can be used to measure biopotentials without skin preparation and conduction gel. In addition, the foam substrate of our dry electrode allows a high geometric conformity between the electrode and irregular scalp surface to maintain low skin-electrode interface impedance, even under motion. The experimental results presented that the dry foam electrode performs better for long-term EEG measurement, and is practicable for daily life applications.
A brain-computer interface (BCI) is a communication system that can help users interact with the outside environment by translating brain signals into machine commands. The use of electroencephalographic (EEG) signals has become the most common approach for a BCI because of their usability and strong reliability. Many EEG-based BCI devices have been developed with traditional wet- or micro-electro-mechanical-system (MEMS)-type EEG sensors. However, those traditional sensors have uncomfortable disadvantage and require conductive gel and skin preparation on the part of the user. Therefore, acquiring the EEG signals in a comfortable and convenient manner is an important factor that should be incorporated into a novel BCI device. In the present study, a wearable, wireless and portable EEG-based BCI device with dry foam-based EEG sensors was developed and was demonstrated using a gaming control application. The dry EEG sensors operated without conductive gel; however, they were able to provide good conductivity and were able to acquire EEG signals effectively by adapting to irregular skin surfaces and by maintaining proper skin-sensor impedance on the forehead site. We have also demonstrated a real-time cognitive stage detection application of gaming control using the proposed portable device. The results of the present study indicate that using this portable EEG-based BCI device to conveniently and effectively control the outside world provides an approach for researching rehabilitation engineering.
A real-time wireless electroencephalogram (EEG)-based brain-computer interface (BCI) system for drowsiness detection has been proposed. Drowsy driving has been implicated as a causal factor in many accidents. Therefore, real-time drowsiness monitoring can prevent traffic accidents effectively. However, current BCI systems are usually large and have to transmit an EEG signal to a back-end personal computer to process the EEG signal. In this study, a novel BCI system was developed to monitor the human cognitive state and provide biofeedback to the driver when drowsy state occurs. The proposed system consists of a wireless physiological signal-acquisition module and an embedded signal-processing module. Here, the physiological signal-acquisition module and embedded signal-processing module were designed for long-term EEG monitoring and real-time drowsiness detection, respectively. The advantages of low owner consumption and small volume of the proposed system are suitable for car applications. Moreover, a real-time drowsiness detection algorithm was also developed and implemented in this system. The experiment results demonstrated the feasibility of our proposed BCI system in a practical driving application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.