Graphene is at the centre of nanotechnology research. In order to fully exploit its outstanding properties, a mass production method is necessary. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to ~0.01 mg/ml by dispersion and exfoliation of graphite in organic solvents such as N-methylpyrrolidone. This occurs because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energy matches that of graphene. We confirm the presence of individual graphene sheets with yields of up to 12% by mass, using absorption spectroscopy, transmission electron microscopy and electron diffraction. The absence of defects or oxides is confirmed by X-ray photoelectron, infra-red and Raman spectroscopies. We can produce conductive, semi-transparent films and conductive composites. Solution processing of graphene opens up a whole range of potential large-scale applications from device or sensor fabrication to liquid phase chemistry. Hernandez et al 2Graphene is one of the most exciting nano-materials due to the cascade of unique physical properties that have recently been demonstrated. For example, due to the details of its electronic structure, charge carriers in graphene behave as massless Dirac fermions 1 . Furthermore, novel effects such as an ambipolar field effect 2 , room temperature quantum Hall effect 3 , breakdown of the Born-Oppenheimer approximation 4 are observed. However, as was the case in the early days of nanotube and nanowire research, graphene at present still suffers from one problem, critical for its mass-scale exploitation: it cannot yet be made with high yield. The standard procedure used to make graphene is micromechanical cleavage 5 . This yields the best samples to date, with mobilities up to 200,000 cm 2 /Vs. 6 However, single layers are a negligible fraction amongst large quantities of thin graphite flakes. Furthermore, it is difficult to see how to scale up this process to mass production. Alternatively, growth of graphene is also commonly achieved by annealing SiC substrates, but these samples are in fact composed of a multitude of domains, most of them sub-micrometer, and not spatially uniform in number, or in size over larger length scales 7 . A number of works have also reported graphene growth on metal substrates 8,9 , but this would require the sample transfer to insulating substrates in order to make useful devices, either via mechanical transfer or, via solution processing.Recently, a large number of papers have described the dispersion and exfoliation of graphene oxide (GO) [10][11][12][13] . This material consists of graphene-like sheets, chemically functionalised with compounds such as hydroxyls and epoxides, which stabilise the sheets in water 14 . However, this functionalisation results in considerable disruption of the electronic structure of the graphene. In fact GO is an insulator 15 rather than a semi-metal and is conceptually differen...
We have demonstrated a method to disperse and exfoliate graphite to give graphene suspended in water-surfactant solutions. Optical characterisation of these suspensions allowed the partial optimisation of the dispersion process. Transmission electron microscopy showed the dispersed phase to consist of small graphitic flakes. More than 40% of these flakes had <5 layers with ~3% of flakes consisting of monolayers. These flakes are stabilised against reaggregation by Coulomb repulsion due to the adsorbed surfactant. However, the larger flakes tend to sediment out over ~6 weeks, leaving only small flakes dispersed. It is possible to form thin films by vacuum filtration of these dispersions. Raman and IR spectroscopic analysis of these films suggests the flakes to be largely free of defects and oxides. The deposited films are reasonably conductive and are semi-transparent. Further improvements may result in the development of cheap transparent conductors.
Abstract:The covalent chemical functionalization of exfoliated hexagonal boron-nitride nanosheets (BNNSs) is achieved by the solution phase oxygen radical functionalization of boron atoms in the h-BN lattice. This involves a two-step procedure to initially covalently graft alkoxy groups to boron atoms and the subsequent hydrolytic defunctionalisation of the groups to yield hydroxyl-functionalized BNNSs (OHBNNSs). Characterization of the functionalized-BNNSs using HR-TEM, Raman, UV-Vis, FTIR, NMR, and TGA was performed to investigate both the structure of the BNNSs and the covalent functionalization methodology. OH-BNNSs were used to prepare polymer nanocomposites and their mechanical properties analyzed. The influence of the functional groups grafted to the surface of the BNNSs is investigated by demonstrating the impact on mechanical properties of both non-covalent and covalent bonding at the interface between the nanofiller and polymer matrices.
We report on the modification of graphene oxide (GO) with polyvinylalcohol (PVA) leading to the mechanical improvement of GO based materials. First, GO was covalently functionalised with PVA by esterification of carboxylic groups on GO with hydroxyl groups of PVA resulting in functionalised f-(PVA)GO. This was carried out for PVA of six different molecular weights. This functionalised graphene oxide could be formed into a paper-like material by vacuum filtration.Papers prepared from f-(PVA)GO showed significant increases in mechanical properties compared to those prepared with GO or with simple mixtures of GO and PVA. The best performance was achieved for PVA functional groups with molecular weights between 50 and 150 kg/mol. Improvements in Young's moduli of 60% and tensile strength of 400% were observed relative to GO-only paper. The improved mechanical properties are attributed to enhanced inter-flake stress transfer due to the covalently bonded PVA. Second, functionalised f-(PVA)GO was used as filler in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.