-The three-dimensional (3D) polygonal meshes are recently widely used in several domains, which necessitate the realistic visualization of the objects. Moreover, there is an urgent need to protect the 3D data properties for preventing unauthorized reproduction. The 3D digital watermarking technology is one of the best solutions to protect data from piracy during transmission through the internet. The current work proposed a novel robust watermarking scheme of polygonal meshes for copyright protection purposes. The proposed algorithm is based on the characteristics of the mesh geometry to embed a sequence of data bits into the object by slightly adjusting the vertex positions. Furthermore, the proposed method used a blind detection scheme. The watermarked model is perceptually indistinguishable from the original one and the embedded watermark is invariant to affine transformation. Through simulations, the quality of the watermarked object as well as the inserted watermark robustness against various types of attacks were tested and evaluated to prove the validity and the efficiency of our algorithm.
Abstract:The speech feature extraction has been a key focus in robust speech recognition research; it significantly affects the recognition performance. In this paper, we first study a set of different features extraction methods such as linear predictive coding (LPC), mel frequency cepstral coefficient (MFCC) and perceptual linear prediction (PLP) with several features normalization techniques like rasta filtering and cepstral mean subtraction (CMS). Based on this, a comparative evaluation of these features is performed on the task of text independent speaker identification using a combination between gaussian mixture models (GMM) and linear and non-linear kernels based on support vector machine (SVM).
Speech emotion recognition is the indispensable requirement for efficient human machine interaction. Most modern automatic speech emotion recognition systems use Gaussian mixture models (GMM) and Support Vector Machines (SVM). GMM are known for their performance and scalability in the spectral modeling while SVM are known for their discriminatory power. A GMM-supervector characterizes an emotional style by the GMM parameters (mean vectors, covariance matrices, and mixture weights). GMM-supervector SVM benefits from both GMM and SVM frameworks. In this paper, the GMM-UBM mean interval (GUMI) kernel based on the Bhattacharyya distance is successfully used. CFSSubsetEval combined with Best first algorithm and Greedy stepwise were also utilized on the supervectors space in order to select the most important features. This framework is illustrated using Mel-frequency cepstral (MFCC) coefficients and Perceptual Linear Prediction (PLP) features on two different emotional databases namely the Surrey Audio-Expressed Emotion and the Berlin Emotional speech Database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.