Rapid detection and identification of potentially harmful bacteria is ideal for food manufacturers to prevent foodborne illness outbreaks. Continuous monitoring method of foodborne pathogens levels and trends in food gives real-time results. Therefore, the objectives of this study were to fabricate and characterize the continuous flow multijunction biosensor for simultaneous detection of Escherichia coli K12 and Staphylococcus aureus. Junction biosensors were fabricated using gold plated tungsten wires coated with polyethylenimine and single walled carbon nanotubes. Each junction was functionalized with streptavidin and biotinylated antibodies specific to E. coli K12 and S. aureus. Then, single or 2 biosensors for each targeted analyte were connected to tubing, perpendicular to the flow direction. Pure serial diluted samples of E. coli K12 and S. aureus and microbial cocktail samples were continuously pumped at a 0.0167 mL/s into the detection zone. Changes in the electric current by biorecognition reactions between antibody and antigens were calculated. The developed junction sensor coupled with the fluidic channel showed the enhancement of the electric signal responses for detection of E. coli K12, compared to the stationary sensor. A linear regression was observed for both the E. coli and S. aureus functionalized array sensors in the detection range of 10(2) to 10(5) CFU/mL. Multiplexed detection of bacteria at the sensing levels as low as 10(2) CFU/mL for E. coli K12 and S. aureus was achieved within 2 min. Therefore, the continuous flow multijunction biosensor shows potential for rapid and continuous multiplexed detection of foodborne pathogens.
An electrochemical immunosensor has been developed for the rapid detection and identification of potentially harmful bacteria in food and environmental samples. This study aimed to fabricate a microwire-based electrochemical immunosensor (MEI sensor) for selective detection of Escherichia coli and Staphylococcus aureus in microbial cocktail samples using dielectrophoresis (DEP)-based cell concentration. A gold-coated tungsten microwire was functionalized by coating polyethylenimine, single-walled carbon nanotube (SWCNT) suspension, streptavidin, biotinylated antibodies, and then bovine serum albumin (BSA) solutions. Double-layered SWCNTs and 5% BSA solution were found to be optimized for enhanced signal enhancement and nonspecific binding barrier. The selective capture of E. coli K12 or S. aureus cells was achieved when the electric field in the bacterial sample solution was generated at a frequency of 3 MHz and 20 Vpp. A linear trend of the change in the electron transfer resistance was observed as E. coli concentrations increased from 5.32 × 102 to 1.30 × 108 CFU/mL (R2 = 0.976). The S. aureus MEI sensor fabricated with the anti-S. aureus antibodies also showed an increase in resistance with concentrations of S. aureus (8.90 × 102–3.45 × 107 CFU/mL) with a correlation of R2 = 0.983. Salmonella typhimurium and Listeria monocytogenes were used to evaluate the specificity of the MEI sensors. The functionalization process developed for the MEI sensor is expected to contribute to the sensitive and selective detection of other harmful microorganisms in food and environmental industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.