Foodborne pathogen detection using biomolecules and nanomaterials may lead to platforms for rapid and simple electronic biosensing. Integration of single walled carbon nanotubes (SWCNTs) and immobilized antibodies into a disposable bio-nano combinatorial junction sensor was fabricated for detection of Escherichia coli K-12. Gold tungsten wires (50 µm diameter) coated with polyethylenimine (PEI) and SWCNTs were aligned to form a crossbar junction, which was functionalized with streptavidin and biotinylated antibodies to allow for enhanced specificity towards targeted microbes. In this study, changes in electrical current (ΔI) after bioaffinity reactions between bacterial cells (E. coli K-12) and antibodies on the SWCNT surface were monitored to evaluate the sensor's performance. The averaged ΔI increased from 33.13 nA to 290.9 nA with the presence of SWCNTs in a 108 CFU/mL concentration of E. coli, thus showing an improvement in sensing magnitude. Electrical current measurements demonstrated a linear relationship (R2 = 0.973) between the changes in current and concentrations of bacterial suspension in range of 102–105 CFU/mL. Current decreased as cell concentrations increased, due to increased bacterial resistance on the bio-nano modified surface. The detection limit of the developed sensor was 102 CFU/mL with a detection time of less than 5 min with nanotubes. Therefore, the fabricated disposable junction biosensor with a functionalized SWCNT platform shows potential for high-performance biosensing and application as a detection device for foodborne pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.