We show that with a system of electrically-gated wide quantum wells embedded inside a simple dielectric waveguide structure, it is possible to excite, control, and observe waveguided exciton polaritons that carry an electric dipole moment. We demonstrate that the energy of the propagating dipolariton can be easily tuned using local electrical gates, that their excitation and extraction can be easily done using simple evaporated metal gratings, and that the dipolar interactions between polaritons and between polaritons and excitons can also be controlled by the applied electric fields. This system of gated flying dipolaritons thus exhibit the ability to locally control both the single polariton properties as well as the interactions between polaritons, which should open up opportunities for constructing complex polaritonic circuits and for studying strongly-interacting, correlated polariton gases.
We demonstrate a directional beaming of photons emitted from nanocrystal quantum dots that are embedded in a subwavelength metallic nanoslit array with a divergence angle of less than 4°. We show that the eigenmodes of the structure result in localized electromagnetic field enhancements at the Bragg cavity resonances, which could be controlled and engineered in both real and momentum space. The photon beaming is achieved using the enhanced resonant coupling of the quantum dots to these Bragg cavity modes, which dominates the emission properties of the quantum dots. We show that the emission probability of a quantum dot into the narrow angular mode is 20 times larger than the emission probability to all other modes. Engineering nanocrystal quantum dots with subwavelength metallic nanostructures is a promising way for a range of new types of active optical devices, where spatial control of the optical properties of nanoemitters is essential, on both the single and many photons level.
Nitrogen-Vacancy (NV) color centers in diamond have emerged as promising quantum solidstate systems, with applications ranging from quantum information processing to magnetic sensing. One of the most useful properties of NVs is the ability to read their ground-state spin projection optically at room temperature. This work provides a theoretical analysis of Purcell enhanced NV optical coupling, through which we find optimal parameters for maximal Signal to Noise Ratio (SNR) of the optical spin-state readout. We conclude that a combined increase in spontaneous emission (through Purcell enhancement) and in optical excitation could significantly increase the readout SNR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.