Methylmercury (MeHg) is a hazardous environmental pollutant, affecting Amazon basin communities by anthropogenic activities. The exact safe level of MeHg exposure is unclear, despite the efforts of health international societies to avoid mercury (Hg) poisoning. Central nervous system is severely impacted by Hg intoxication, reflecting on motor impairment. In addition, alcohol has been associated to an overall brain damage. According to lifestyle of Amazon riverside communities, alcohol intake occurs frequently. Thus, we investigated if continuous MeHg exposure at low doses during adolescence displays motor deficits (experiment 1). In the experiment 2, we examine if the co-intoxication (i.e. MeHg plus ethanol exposure) during adolescence intensify motor damage. In the experiment 1, Wistar adolescent rats (31 days old) received chronic exposure to low dose (CELD) of MeHg (40 μg/kg/day) for 35 days. For the experiment 2, five sessions of alcohol binge drinking paradigm (3ON-4OFF; 3.0 g/kg/day) were employed associated to MeHg intoxication. Motor behaviour was evaluated by the open field, pole test, beam walking and rotarod paradigms. CELDS of MeHg display motor function damage, related to hypoactivity, bradykinesia-like behaviour, coordination deficits and motor learning impairment. Co-intoxication of MeHg plus ethanol reduced cerebellar Hg content, however also resulted in motor behavioural impairment, as well as additive effects on bradykinesia and fine motor evaluation.
We hypothesized that dorsomedial hypothalamus (DMH) modulates autonomic and neuroendocrine responses in rats at rest and when subjected to restraint stress (RS). Male Wistar rats were used, and guide cannulas were bilaterally implanted in the DMH for microinjection of vehicle or the nonspecific synaptic blocker CoCl 2 (1 mM/100 nl). A polyethylene catheter was inserted into the femoral artery for the recording of arterial pressure and heart rate (HR). Tail temperature was measured using a thermal camera. The session of RS started 10 min after DMH treatment with vehicle or CoCl2. Under homecage condition, the pretreatment of DMH with CoCl 2 increased baseline blood pressure (BP), and heart rate (HR) without affecting the tail temperature. In addition, it decreased plasma vasopressin levels without affecting plasma corticosterone and oxytocin contents. When rats pretreated with CoCl 2 were exposed to RS, the RS-evoked cardiovascular were similar to those observed in vehicle-treated animals; however, because cobalt pretreatment of the DMH increased baseline BP and HR values, and the RS-evoked cardiovascular responses did not exceed those observed in vehicle-treated animals, suggesting a possible celling limit, the possibility that DMH is involved in the modulation of RS-evoked cardiovascular responses cannot be certainly excluded. Nonetheless, the pretreatment of DMH with CoCl 2 blocked the reduction in tail temperature caused by RS. The DMH pretreatment with CoCl 2 did not modify the RS-evoked increase in plasma corticosterone and oxytocin contents. In conclusion, the present data suggest the involvement of DMH in the maintenance of BP, HR, and vasopressin release under the rest conditions at the home-cage. Furthermore, indicate that DMH is an important thermoregulatory center during exposure to RS, regulating tail artery vasoconstriction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.