Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that allows interaction with endogenous cortical oscillatory rhythms by means of external sinusoidal potentials. The physiological mechanisms underlying tACS effects are still under debate. Whereas online (e.g., ongoing) tACS over the motor cortex induces robust state-, phase- and frequency-dependent effects on cortical excitability, the offline effects (i.e. after-effects) of tACS are less clear. Here, we explored online and offline effects of tACS in two single-blind, sham-controlled experiments. In both experiments we used neuronavigated transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) as a probe to index changes of cortical excitability and delivered M1 tACS at 10 Hz (alpha), 20 Hz (beta) and sham (30 s of low-frequency transcranial random noise stimulation; tRNS). Corticospinal excitability was measured by single pulse TMS-induced motor evoked potentials (MEPs). tACS was delivered online in Experiment 1 and offline in Experiment 2. In Experiment 1, the increase of MEPs size was maximal with the 20 Hz stimulation, however in Experiment 2 neither the 10 Hz nor the 20 Hz stimulation induced tACS offline effects. These findings support the idea that tACS affects cortical excitability only during online application, at least when delivered on the scalp overlying M1, thereby contributing to the development of effective protocols that can be applied to clinical populations.
Successful acclimatization and ex vitro rooting are among the key factors reducing the cost of micropropagated plants. We compared the survival of seven Russian cultivars of raspberry (Rubus idaeus) after rooting in vitro and ex vitro. Rooted shoots adapted to nonsterile conditions much better than nonrooted ones, with survival rates of 81%–98% versus 43%–76%, respectively. We studied the effects of different combinations of plant-growth regulators and gelling agents added to a proliferation medium on ex vitro rooting of primocane-fruiting raspberry cultivar “Atlant”. Reducing the agar concentration from 8 to 6.5 g/L increased the multiplication rate, but caused shoot hyperhydricity. The highest survival rate (97.2%) was observed for shoots grown in a medium containing 0.2 and 0.1 mg/L IBA, and gelled with 5 g/L agar and 0.2 g/L Phytagel. The microshoot height at the multiplication stage did not correlate with the plant growth during acclimatization. The obtained results can be used in the commercial micropropagation of the raspberry.
Transcranial direct current stimulation (tDCS) is a promising tool for modulation of learning and memory, allowing to transiently change cortical excitability of specific brain regions with physiological and behavioral outcomes. A detailed exploration of factors that can moderate tDCS effects on episodic long-term memory (LTM) is of high interest due to the clinical potential for patients with traumatic or pathological memory deficits and with cognitive impairments. This commentary discusses findings by
Marián et al. (2018)
recently published in
Cortex
within a broad context of brain stimulation in memory research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.