In this paper we consider cases of existence of invariant measure, additional first integrals, and Poisson structure in a problem of rigid body's rolling without sliding on plane and sphere. The problem of rigid body's motion on plane was studied by S. A. Chaplygin, P. Appel, D. Korteweg. They showed that the equations of motion are reduced to a secondorder linear differential equation in the case when the surface of dynamically symmetric body is a surface of revolution. These results were partially generalized by P. Woronetz, who studied the motion of body of revolution and the motion of round disk with sharp edge on the surface of sphere. In both cases the systems are Euler -Jacobi integrable and have additional integrals and invariant measure. It turns out that after some change of time defined by reducing multiplier, the reduced system is a Hamiltonian system. Here we consider different cases when the integrals and invariant measure can be presented as finite algebraic expressions.We also consider the generalized problem of rolling of dynamically nonsymmetric Chaplygin ball. The results of studies are presented as tables that describe the hierarchy of existence of various tensor invariants: invariant measure, integrals, and Poisson structure in the considered problems.
We consider a nonholonomic system describing a rolling of a dynamically nonsymmetric sphere over a fixed sphere without slipping. The system generalizes the classical nonholonomic Chaplygin sphere problem and it is shown to be integrable for one special ratio of radii of the spheres. After a time reparameterization the system becomes a Hamiltonian one and admits a separation of variables and reduction to Abel-Jacobi quadratures. The separating variables that we found appear to be a non-trivial generalization of ellipsoidal (spheroconic) coordinates on the Poisson sphere, which can be useful in other integrable problems.Using the quadratures we also perform an explicit integration of the problem in theta-functions of the new time. *
This review is dedicated to the dynamics of the rattleback, a phenomenon with curious physical properties that is studied in nonholonomic mechanics. All known analytical results are collected here, and some results of our numerical simulation are presented. In particular, three-dimensional Poin-care maps associated with dynamical systems are systematically investigated for the first time. It is shown that the loss of stability of periodic and quasiperiodic solutions, which gives rise to strange attractors, is typical of the three-dimensional maps related to rattleback dynamics. This explains some newly discovered properties of the rattleback related to the transition from regular to chaotic solutions at certain values of the physical parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.