A large number of cannabinoid compounds have been discovered, developed, and used to study the effects of cannabinoids on cancers in model systems. However, few clinical trials have been conducted on the use of cannabinoids in the treatment of cancers in humans. Further studies require extensive monitoring of the effects of cannabinoids alone or in combination with standard anticancer strategies. With such knowledge, cannabinoids could become a therapy of choice in contemporary oncology.
Recent data established the prospective applications for fullerenol (C60(OH)24) nanoparticle (FNP) in many fields, such as antioxidants, neuroprotective agents, and potential anti-radiation drugs. Leukemia cell sensitization to apoptosis induced by ionizing radiation is achieved by upregulation of ROS production and/or downregulation of antioxidative enzymes. Therefore, our aim was to analyze the potential role of fullerenol nanoparticle in modulation of the leukemic cellular response to irradiation. We used the qRT-PCR to analyze the expression level of mRNA for 11 genes in irradiated and FNP pre-treated irradiated K562 cells, and compared the gene expression level with the overall cell survival. Our results of the improved cell survival in FNP-treated irradiated cells and significant overexpression of anti-apoptotic Bcl-2 and Bcl-xL and cytoprotective genes such as GSTA4, MnSOD, NOS, CAT and HO-1 genes, may indicate that FNP exerts cytoprotective function in K562 leukemic cells, rendering K562 cells more tolerant to radiotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.