FLAIR sequences reliably provide diagnostic images in patients with acute SAH.
1. Several areas in the monkey dorsal visual pathway, including the dorsal part of the medial superior temporal area, have been found to contain cells responding to movements of a wide visual field and are suggested to be involved in analyzing self-induced motion information. In the present study, positron emission tomography was used to localize human cortical regions responding to wide-field visual motion. Changes in regional cerebral blood flow (rCBF) were measured when subjects maintained fixation and viewed low-contrast (0.15 log units brighter than the background) dots subtending 80 x 80 degrees and moving either coherently or incoherently. Brain foci were localized after activity in a fixation-only paradigm was subtracted from that in the two moving dot paradigms. 2. Both the coherent and incoherent movements significantly activated the primary/secondary visual cortex and surrounding visual areas in the cuneus and superior occipital gyrus. Subtraction of images between the coherent and incoherent movements showed that the activity caused by the two types of movement was comparable in these early visual cortical regions. 3. In the lateral occipitotemporoparietal cortex, the coherent movement specifically activated two separate areas; a posterior focus was located at the border of the right occipitotemporal gyri, and a dorsoanterior focus was located bilaterally in the temporoparietal cortex. The incoherent movement did not activate these regions. 4. A fine anatomic localization using individual magnetic resonance images was performed for the bilateral activation in the temporoparietal cortex, which was found to be located mainly in the depth of the inferior parietal lobule and a small portion of the superior and middle temporal gyri. 5. Both the coherent and incoherent movements activated a part of the superior parietal lobule located within the intraparietal sulcus (Brodmann area 7). The bilateral foci activated by the coherent movement were located more anteriorly than the focus activated by the incoherent movement. Subtraction images between the coherent and incoherent movements, however, did not reveal any significant rCBF increases in the superior parietal lobule. 6. Several other cortical regions known to be involved in visuospatial and visuomotor functions were also activated by the coherent movement, including the frontal eye field (Brodmann area 8) and premotor cortex (Brodmann area 6) in the frontal lobe. 7. The posteriorly located activation at the border of occipito-temporal gyri corresponds to the homologue of the middle temporal area reported in previous activation studies using small to medium-sized motion stimuli. The bilateral activation in the inferior parietal lobule appeared to rely on wide-field motion stimulation.
The present study describes a stabilization of single quantum dot (QD) micelles by a "hydrophobic" silica precursor and an extension of a silica layer to form a silica shell around the micelle using "amphiphilic" and "hydrophilic" silica precursors. The obtained product consists of approximately 92% single nanocrystals (CdSe, CdSe/ZnS, or CdSe/ZnSe/ZnS QDs) into the silica micelles, coated with a silica shell. The thickness of the silica shell varies, starting from 3-4 nm. Increasing the shell thickness increases the photoluminescence characteristics of QDs in an aqueous solution. The silica-shelled single CdSe/ZnS QD micelles possess a comparatively high quantum yield in an aqueous solution, a controlled small size, sharp photoluminescence spectra (fwhm approximately 30 nm), an absence of aggregation, and a high transparency. The surface of the nanoparticles is amino-functionalized and ready for conjugation. A comparatively good biocompatibility is demonstrated. The nanoparticles show ability for intracellular delivery and are noncytotoxic during long-term incubation with viable cells in the absence of light exposure, which makes them appropriate for cell tracing and drug delivery. The presence of the hydrophobic layer between the QD and silica-shell ensures an incorporation of other hydrophobic molecules with interesting properties (e.g., hydrophobic paramagnetic substances, hydrophobic photosensitizers, membrane stabilizers, lipid-soluble antioxidants or prooxidants, other hydrophobic organic dyes, etc.) in the close proximity of the nanocrystal. Thus, it is possible to combine the characteristics of hybrid materials with the priority of small size. The silica-shelled single QD micelles are considered as a basis for fabrication of novel hybrid nanomaterials for industrial and life science applications, for example, nanobioprobes with dual modality for simultaneous application in different imaging techniques (e.g., fluorescent imaging and functional magnetic resonance imaging).
The present study describes a novel nonradioactive methodology for in vivo noninvasive, real-time imaging of blood-brain barrier (BBB) permeability for conventional drugs, using nitroxyl radicals as spin-labels and magnetic resonance imaging (MRI). Two TEMPO-labeled analogues (SLENU and SLCNUgly) of the anticancer drug lomustine [1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea] were synthesized, using a substitution of the cyclohexyl part with nitroxyl radical. Nonmodified nitroxyl radical TEMPOL was used for comparison. The nitroxyl derivatives were injected intravenously in healthy mice via the tail vein, and MR imaging of the brain was performed on a 7.0 T MRI. The MRI signal dynamic of SLENU and SLCNUgly followed the same kinetics as nonmodified TEMPO radical. SLENU and SLCNUgly were rapidly transported and randomly distributed in the brain tissue, which indicated that the exchange of cyclohexyl part of lomustine with TEMPO radical did not suppress the permeability of the anticancer drug for BBB. The selected nitroxyl derivatives possessed different hydrophobicity, cell permeabilization ability, and blood clearance. Based on these differences, we investigated the relationship betweenthe structure of nitroxyl derivatives, their half-life in the circulation, and their MRI signal dynamic in the brain. This information was important for estimation of the merits and demerits of the described methodology and finding pathways for overcoming the restrictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.