Due to environmental concerns, lead-free solders were introduced to replace the lead-based solders in microelectronics devices technology. Although there are many lead-free solders available, the Sn-Ag-Cu solders are considered the best replacement due to their good wettability and joint strength. Although the Sn-Ag-Cu solders are accepted widely, but there are still some room for improvement. In this study, 1wt% Zn, which can be considered high percentage for a dopant, was added into the solder via powder metallurgy route. The effects of adding this dopant into the Sn-3.5Ag-1.0Cu solder on the interface intermetallic and thickness were investigated. The intermetallics phases formed were observed under Scanning Electron Microscope (SEM) and their thicknesses were measured. The SEM results showed the presence of Cu6Sn5, Cu3Sn and (Cu,Zn)6Sn5 intermetallics. It can be concluded that Zn behaved as retarding agent and significantly retarded the growth of Cu-Sn intermetallics.
Due to environmental concerns, lead-free solders were introduced in replacing the lead-based solders in microelectronics devices technology. Although there are many lead-free solder available, the Sn-Ag-Cu is considered the best choice. But the solder has its draw backs in terms of melting temperature and intermetallic formations. To improve the solder, a fourth element Zn was added into the solder. The new composite solders were synthesized via powder metallurgy route. This research studies the effect of 0.1wt% Zn addition on the hardness and intermetallic formation on Cu substrate. For the hardness results, the micro Vickers values were reported. For intermetallic, the solders were melted at 250°C and aged at 150°C until 400 hours. The microhardness value for Zn based composites solder shows higher micro Vickers hardness compared to un-doped counterparts. The phases formed and its growth was studied under SEM and by energy dispensive x-ray (EDX). The SEM results show the presence of Cu6Sn5and Cu3Sn intermetallics and the Cu5Zn8intermetallic was not detected. The addition of 0.1wt% Zn has retarded the growth of the Cu3Sn intermetallic but not the total intermetallic thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.