Abstract. The neutron time-of-flight facility n TOF features a white neutron source produced by spallation through 20 GeV/c protons impinging on a lead target. The facility, aiming primarily at the measurement of neutron-induced reaction cross sections, was operating at CERN between 2001 and 2004, and then underwent a major upgrade in 2008. This paper presents in detail all the characteristics of the new neutron beam in the currently available configurations, which correspond to two different collimation systems and two choices of neutron moderator. The characteristics discussed include the intensity and energy dependence of the neutron flux, the spatial profile of the beam, the in-beam background components and the energy resolution/broadening. The discussion of these features is based on dedicated measurements and Monte Carlo simulations, and includes estimations of the systematic uncertainties of the mentioned quantities.
Atomic nuclei exhibit single-particle and collective degrees of freedom, making them susceptible to variations in size and shape when adding or removing nucleons. The rare cases where dramatic changes in shape occur with the removal of only a single nucleon are key for pinpointing the components of the nuclear interaction driving nuclear deformation. Laser spectroscopy probes the nuclear charge distribution, revealing attometer-scale variations and highlighting sensitivity to the proton (Z) and neutron (N) configurations of the nucleus. The lead isotopes, which possess a closed proton shell (Z = 82), are spherical and steadily shrink with decreasing N. A surprisingly different story was observed for their close neighbours, the mercury isotopes (Z = 80) almost half a century ago 1, 2 : Whilst the even-mass isotopes follow the trend seen for lead, the odd-mass isotopes 181,183,185 Hg exhibit a striking increase in charge radius. This dramatic 'shape staggering' between evenand odd-mass isotopes remains a unique feature of the nuclear chart. Here we present the extension of laser spectroscopy results that reach 177 Hg. An unprecedented combination of state-of-theart techniques including resonance laser ionization, nuclear spectroscopy and mass spectrometry, has established 181 Hg as the shape-staggering endpoint. Accompanying this experimental tour de force, recent computational advances incorporating the largest valence space ever used have been exploited to provide Monte-Carlo Shell Model calculations, in remarkable agreement with the experimental observations. Thus, microscopic insight into the subtle interplay of nuclear interactions that give rise to this phenomenon has been obtained, identifying the shape-driving orbitals. Although shape staggering in the mercury isotopes is a unique and localized feature in the nuclear chart, the underlying mechanism that has now been uncovered nicely describes the duality of single-particle and collective degrees of freedom in atomic nuclei.
A new method has been developed for increasing the sensitivity of collinear laser spectroscopy. The method utilizes an ion-trapping technique in which a continuous low-energy ion beam is cooled and accumulated in a linear Paul trap and subsequently released as a short (10-20 micros) bunch. In collinear laser measurements the signal-to-noise ratio has been improved by a factor of 2 x 10(4), allowing spectroscopic measurements to be made with ion-beam fluxes of approximately 50 ions s(-1). The bunching method has been demonstrated in an on-line isotope shift and hyperfine structure measurement on radioactive (175)Hf.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.