Abstract-Over the last few decades, rapid improvement of computer capabilities has allowed impact cratering to be modeled with increasing complexity and realism, and has paved the way for a new era of numerical modeling of the impact process, including full, three-dimensional (3D) simulations. When properly benchmarked and validated against observation, computer models offer a powerful tool for understanding the mechanics of impact crater formation. This work presents results from the first phase of a project to benchmark and validate shock codes. A variety of 2D and 3D codes were used in this study, from commercial products like AUTODYN, to codes developed within the scientific community like SOVA, SPH, ZEUS-MP, iSALE, and codes developed at U.S. National Laboratories like CTH, SAGE/RAGE, and ALE3D. Benchmark calculations of shock wave propagation in aluminum-on-aluminum impacts were performed to examine the agreement between codes for simple idealized problems. The benchmark simulations show that variability in code results is to be expected due to differences in the underlying solution algorithm of each code, artificial stability parameters, spatial and temporal resolution, and material models. Overall, the inter-code variability in peak shock pressure as a function of distance is around 10 to 20%. In general, if the impactor is resolved by at least 20 cells across its radius, the underestimation of peak shock pressure due to spatial resolution is less than 10%. In addition to the benchmark tests, three validation tests were performed to examine the ability of the codes to reproduce the time evolution of crater radius and depth observed in vertical laboratory impacts in water and two well-characterized aluminum alloys. Results from these calculations are in good agreement with experiments. There appears to be a general tendency of shock physics codes to underestimate the radius of the forming crater. Overall, the discrepancy between the model and experiment results is between 10 and 20%, similar to the inter-code variability.
Planar shock waves in single-crystal copper were simulated using nonequilibrium molecular dynamics with a realistic embedded atom potential. The simulation results are in good agreement with new experimental data presented here, for the Hugoniot of single-crystal copper along ⟨100⟩. Simulations were performed for Hugoniot pressures in the range 2 GPa – 800 GPa, up to well above the shock induced melting transition. Large anisotropies are found for shock propagation along ⟨100⟩,⟨110⟩, and ⟨111⟩, with quantitative differences from pair potentials results. Plastic deformation starts at Up≳0.75km∕s, and melting occurs between 200 and 220 GPa, in agreement with the experimental melting pressure of polycrystalline copper. The Voigt and Reuss averages of our simulated Hugoniot do not compare well below melting with the experimental Hugoniot of polycrystalline copper. This is possibly due to experimental targets with preferential texturing and/or a much lower Hugoniot elastic limit.
A systematic study to quantify the effects of specific microstructural features on the spall behavior of 99.999 pct copper has revealed a strong dependence of the failure processes on length scale. Shock loading experiments with Cu flyer plates at velocities ranging from 300 to 2000 m/s (or impact pressures from 5 to 45 GPa) using a 35-mm single/two-stage light gas gun revealed that single crystals exhibit a higher spallation resistance than fine-grained polycrystals and internally oxidized single crystals. However, in contrast to previously reported results, the fine-grained (ϳ8-m) polycrystalline samples exhibit lower damage resistance than the coarse-grained (50-and 133-m) samples. These observations have been analyzed in the context of the length scale inherent in each of these microstructures, and modeled using an analytical model developed recently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.