We present the snow-accumulation distribution over Austfonna, Nordaustlandet, Svalbard, based on 29 shallow ice cores that were retrieved from this ice cap during 1998 and 1999. Mean annual net accumulation is deduced from radioactive layers resulting from the 1954–74 atmospheric nuclear tests (maximum in 1963) and the Chernobyl accident (1986). The Chernobyl layer was located in 19 ice cores in the accumulation area, and the nuclear test layer was located in two deeper ice cores. In addition, the spatial variation of the depth of winter 1998/99 snowpack was mapped using snow probing, ground-penetrating radar methods and pit studies. The altitudinal gradient of the mean annual net mass balance and the altitude of the mean equilibrium line are determined along five transects ending at the top of the ice cap. The mean annual net mass balance and the equilibrium-line altitudes show a high degree of asymmetry between the western and eastern parts of Austfonna, in accordance with the distribution of winter accumulation. Large interannual variations of the accumulation exist. However, the study of the mean annual net mass balance shows no trend for two different time periods, 1963–86 and 1986 to the date of the drillings (1998/99).
In 1997 a 121m ice core was retrieved from Lomonosovfonna, the highest ice field in Spitsbergen, Svalbard (1250 m a.s.l.). Radar measurements indicate an ice depth of 126.5 m, and borehole temperature measurements show that the ice is below the melting point. High-resolution sampling of major ions, oxygen isotopes and deuterium has been performed on the core, and the results from the uppermost 36 m suggest that quasi-annual signals are preserved. The 1963 radioactive layer is situated at 18.5^18.95 m, giving a mean annual accumulation of 0.36 m w.e. for the period 1963^96. The upper 36 m of the ice core was dated back to 1920 by counting layers provided by the seasonal variations of the ions in addition to using a constant accumulation rate, with thinning by pure shear according to Nye (1963). The stratigraphy does not seem to have been obliterated by meltwater percolation, in contrast to most previous core sites on Svalbard. The anthropogenic influence on the Svalbard environment is illustrated by increased levels of sulphate, nitrate and acidity. Both nitrate and sulphate levels started to increase in the late 1940s, remained high until the late 1980s and have decreased during the last 15 years. The records of 18 O, MSA (methanesulphonic acid), and melt features along the core agree with the temperature record from Longyearbyen and the sea-ice record from the Barents Sea at a multi-year resolution, suggesting that this ice core reflects local climatic conditions.
A 50 MHz ground-penetrating radar was used to detect horizontal layers in the snowpack along a longitudinal profile on Nordenskjöldbreen, a Svalbard glacier. The profile passed two shallow and one deep ice-core sites. Two internal radar reflection layers were dated using parameters measured in the deep core. Radar travel times were converted to water equivalent, yielding snow-accumulation rates along the profile for three time periods: 1986–99, 1963–99 and 1963–86. The results show 40–60% spatial variability in snow accumulation over short distances along the profile. The average annual accumulation rate for 1986–99 was found to be about 12% higher than for the period 1963–86, which indicates increased accumulation in the late 1980s and 1990s.
Abstract. During the Nordic EPICA pre-site survey in Dronning Maud Land in 1997/1998 a 120 rn long ice core was retrieved (76ø00'S 08ø03'W, 2400 rn above sea level). The whole core has been measured using the electric conductivity measurement (ECM) and dielectric profiling (DEP) techniques, and the core chronology has been established by detecting major
Temperature, density and accumulation data were obtained from sha]low firn cores, drilled during an overland traverse through a previously unknown part of Dronning Maud Land, East Antarctica. The traverse area is characterised by high mountains that obstruct the ice flow, resulting in a sudden transition from the polar plateau to the coastal region. The spatial variations of potential temperature, ncar-surface firn density and accumulation suggest that katabatic winds are active in this region. Proxy wind data derived [rom fim-density profiles confirm that annual mean wind speed is strongly related to the magnitude of the surface slope. The high elevation of the ice sheet south of the mountains makes for a dry, cold climate, in which mass loss owing to sublimation is small and erosion of snow by the wind has a potentially large impact on the surface mass balance. A simple katabatic-wind model is used to explain the variations o[ accumulation along the traverse line in terms o[ divergence/convergence of the local transport o[ drifting snow.The resulting wind-and snowdrift patterns are c1ose]yconnected to the topography of the ice sheet: ridges are especially sensitive to erosion, while ice streams and other depressions act as collectors of drifting snow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.