Thermal conductivity in non-metallic crystalline materials results from cumulative contributions of phonons that have a broad range of mean free paths. Here we use high frequency surface temperature modulation that generates non-diffusive phonon transport to probe the phonon mean free path spectra of GaAs, GaN, AlN, and 4H-SiC at temperatures near 80 K, 150 K, 300 K, and 400 K. We find that phonons with MFPs greater than 230 ± 120 nm, 1000 ± 200 nm, 2500 ± 800 nm, and 4200 ± 850 nm contribute 50% of the bulk thermal conductivity of GaAs, GaN, AlN, and 4H-SiC near room temperature. By non-dimensionalizing the data based on Umklapp scattering rates of phonons, we identified a universal phonon mean free path spectrum in small unit cell crystalline semiconductors at high temperature.
High electron mobility was achieved in Al1−xInxN∕AlN∕GaN (x=0.20–0.12) heterostructure field effect transistors (HFETs) grown by metal-organic chemical vapor deposition. Reduction of In composition from 20% to 12% increased the room temperature equivalent two-dimensional-electron-gas density from 0.90×1013to1.64×1013cm−2 with corresponding electron mobilities of 1600 and 1410cm2∕Vs, respectively. The 10K mobility reached 17600cm2∕Vs for the nearly lattice-matched Al0.82In0.18N∕AlN∕GaN heterostructure with a sheet carrier density of 9.6×1012cm−2. For comparison, the AlInN∕GaN heterostructure without the AlN spacer exhibited a high sheet carrier density (2.42×1013cm−2) with low mobility (120cm2∕Vs) at room temperature. The high mobility in our samples is in part attributed to ∼1nm AlN spacer which significantly reduces the alloy scattering as well as provides a smooth interface. The HFETs having gate dimensions of 1.5×40μm2 and a 5μm source-drain separation exhibited a maximum transconductance of ∼200mS∕mm with good pinch-off characteristics and over 10GHz current gain cutoff frequency.
A microwave noise technique has been used for experimental investigation, at room temperature, of power dissipation in the voltage-biased two-dimensional electron gas channel located in the GaN layer of a lattice-matched Al 0.82 In 0.18 N/AlN/GaN heterostructure. No saturation of the relaxation time is found in the investigated electron temperature range up to ∼2800 K: the hot-electron energy relaxation time decreases from ∼6 ps at near equilibrium to 75 ± 20 fs at ∼200 nW/electron. The electron drift velocity reaches ∼1.8 × 10 7 cm s −1 at 65 kV cm −1 electric field. The hot-phonon effect on power dissipation is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.