Interhemispheric auditory connectivity via the corpus callosum has been demonstrated to be important for normal speech processing. According to the callosal relay model, directed information flow from the right to the left auditory cortex has been suggested, but this has not yet been proven. For this purpose, 33 healthy participants were investigated with 64-channel EEG while performing the dichotic listening task in which two different consonant–vowel syllables were presented simultaneously to the left (LE) and right ear (RE). eLORETA source estimation was used to investigate the functional (lagged phase synchronization/LPS) and effective (isolated effective coherence/ICoh) connectivity between right and left primary (PAC) and secondary auditory cortices (SAC) in the gamma-band (30–100 Hz) during right and left ear reports. The major finding was a significantly increased effective connectivity in the gamma-band from the right to the left SAC during conscious perception of LE stimuli. In addition, effective and functional connectivity was significantly enhanced during LE as compared to RE reports. These findings give novel insight into transcallosal information transfer during auditory perception by showing that LE performance requires causal interhemispheric inputs from the right to the left auditory cortices, and that this interaction is mediated by synchronized gamma-band oscillations.
Synchronized oscillatory gamma-band activity (30-100Hz) has been suggested to constitute a key mechanism to dynamically orchestrate sensory information integration across multiple spatio-temporal scales. We here tested whether interhemispheric functional connectivity and ensuing auditory perception can selectively be modulated by high-density transcranial alternating current stimulation (HD-tACS). For this purpose, we applied multi-site HD-tACS at 40Hz bilaterally with a phase lag of 180° and recorded a 64-channel EEG to study the oscillatory phase dynamics at the source-space level during a dichotic listening (DL) task in twenty-six healthy participants. In this study, we revealed an oscillatory phase signature at 40Hz which reflects different temporal profiles of the phase asymmetries during left and right ear percept. Here we report that 180°-tACS did not affect the right ear advantage during DL at group level. However, a follow-up analysis revealed that the intrinsic phase asymmetries during sham-tACS determined the directionality of the behavioral modulations: While a shift to left ear percept was associated with augmented interhemispheric asymmetry (closer to 180°), a shift to right ear processing was elicited in subjects with lower asymmetry (closer to 0°). Crucially, the modulation of the interhemispheric network dynamics depended on the deviation of the tACS-induced phase-lag from the intrinsic phase asymmetry. Our characterization of the oscillatory network trends is giving rise to the importance of phase-specific gamma-band coupling during ambiguous auditory perception, and emphasizes the necessity to address the inter-individual variability of phase asymmetries in future studies by tailored stimulation protocols.
A realistic, quantitative model is presented for the excitation of myelinated nerve fibers by intrafascicular electrodes. It predicts the stimulatory regions of any configuration of any number of electrodes, positioned anywhere inside the fascicle. The model has two parts. First, the nerve fiber is represented by a lumped electrical network and its response to an arbitrary extracellular potential field is calculated. Second, assuming a cylindrical geometry of the nerve bundle and its surroundings, an analytical expression for this field is derived. With realistic parameters, the model is applied to two cases: monopolar stimulation by a single cathode and stimulation by a specific tripolar configuration. It is shown that tripolar stimulation has the better spatial selectivity. Also tripolar stimulation is less sensitive to the conductivity of the medium surrounding the nerve and yields a more natural recruitment order.
In order to design the shape and dimensions of new 3D multi-microelectrode information transducers properly, i.e. adapted to the scale of information delivery to and from peripheral nerve fibres, a number of studies were, and still are, being performed on modelling and simulation of electrical volume conduction inside and outside nerves, on animal experiments on stimulation and recording with single wires and linear arrays, and on new technologies for 3D micro-fabrication. This paper presents a selection of the results of these "Neurotechnology' studies at the University of Twente. The experimental and simulation results apply primarily to the peripheral motor nerves of the rat, but are also of interest for neural interfacing with myelinated nerves in man, as fascicles in man are about the same size as in the rat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.