We imaged nanoscale lattice strain in a multilayer semiconductor device prototype with a new X-ray technique, nanofocused Bragg projection ptychography. Applying this technique to the epitaxial stressor layer of a SiGe-on-SOI structure, we measured the internal lattice behavior in a targeted region of a single device and demonstrated that its internal strain profile consisted of two competing lattice distortions. These results provide the strongest nondestructive test to date of continuum modeling predictions of nanoscale strain distributions.
We present an efficient method of imaging 3D nanoscale lattice behavior and strain fields in crystalline materials with a new methodology -three dimensional Bragg projection ptychography (3DBPP). In this method, the 2D sample structure information encoded in a coherent high-angle Bragg peak measured at a fixed angle is combined with the real-space scanning probe positions to reconstruct the 3D sample structure. This work introduces an entirely new means of three dimensional structural imaging of nanoscale materials and eliminates the experimental complexities associated with rotating nanoscale samples. We present the framework for the method and demonstrate our approach with a numerical demonstration, an analytical derivation, and an experimental reconstruction of lattice distortions in a component of a nanoelectronic prototype device.Inversion methods provide a powerful alternative to traditional objective-lens-based microscopy. Techniques that numerically invert coherent diffraction patterns into real space images have provided substantial gains in resolution and sensitivity in certain optical, electron, and x-ray microscopy experiments, especially where image-forming lenses are inefficient or difficult to incorporate. The resulting images, formed by inverting reciprocal space diffraction patterns, contain quantitative information that encodes local physical parameters such as permittivity, density, and atomic displacement at sub-beam-size spatial resolutions.When implemented with hard x-rays, these coherent diffraction imaging (CDI) techniques have enhanced our understanding of the internal structure of nano-and meso-scale materials, especially in operating environments that are difficult to access with other probes. Furthermore, x-ray microscopy methods based on Bragg diffraction are of particular interest because the sensitivity of x-rays to crystalline distortions in materials can be leveraged to reveal the interplay between structure and properties without disturbing environmental boundary conditions. However, the routine application of inversion methods to coherent hard x-ray Bragg diffraction is still limited by stringent experimental requirements and long measurement times.Given the potential impact of non-destructive 3D structural microscopy and the limitations of current 3D Bragg coherent x-ray inversion methods, advances in Bragg phase retrieval methods that facilitate the rapid imaging of crystal lattice behavior in realistic environments are critically important. Here, we introduce a new coherent Bragg diffraction imaging approach, three dimensional Bragg projection ptychography (3DBPP), that provides such a capability. 3DBPP enables 3D image reconstruction from a series of 2D Bragg diffraction patterns measured at a single incident beam angle, thus forming a new mode of inversion-based 3D strain-sensitive imaging. As we discuss in this article, 3DBPP is a hybrid real / reciprocal space technique that takes advantage of the high angle of separation between the incident and diffracted beam in a Bra...
We report the imaging of nanoscale distributions of lattice strain and rotation in complementary components of lithographically engineered epitaxial thin film semiconductor heterostructures using synchrotron x-ray Bragg projection ptychography (BPP). We introduce a new analysis method that enables lattice rotation and out-of-plane strain to be determined independently from a single BPP phase reconstruction, and we apply it to two laterally adjacent, multiaxially stressed materials in a prototype channel device. These results quantitatively agree with mechanical modeling and demonstrate the ability of BPP to map out-of-plane lattice dilatation, a parameter critical to the performance of electronic materials.
The interaction of low-energy XeF 2 with Si(100)(2 × 1) has been studied and compared to that of F 2 . Helium atom diffraction, beam-surface scattering, and thermal desorption measurements are the major techniques used in this study. It is found that XeF 2 dissociatively chemisorbs with high probability solely on the Si dangling bonds up to a coverage of about one monolayer (ML). Molecular fluorine has previously been observed to react similarly, saturating the dangling bonds at 1 ML coverage. The thermal desorption kinetics and products from the fluorinated layer produced by XeF 2 exposure are identical to those produced by F 2 exposure. The interactions of XeF 2 and F 2 are also strikingly similar with respect to the long-range order of the fluorinated Si up to about 1 ML coverage. The order is monitored by He diffraction. In both systems, the diffracted He beams exhibit a sharp decrease in intensity because of the disorder produced by the fluorination of random surface-unit cells as the coverage increases from 0 to about 0.3 ML. The intensity then increases until the fluorine overlayer has fully recovered its (2 × 1) periodicity at about 1 ML. This recovery corresponds to the decoration of each Si dangling bond with a fluorine atom. A critical observation of this study is that despite the large exothermicity of the dissociative chemisorption of XeF 2 or F 2 the order of the surface is not destroyed in either system. After saturation of the dangling bonds, F 2 ceases to react with the surface whereas XeF 2 continues to deposit fluorine by reacting with the Si-Si σ dimer bonds and the Si-Si lattice bonds. The order is destroyed as a result of the continued fluorine deposition, and ultimately, etching occurs by the formation of volatile SiF 4 . † Part of the special issue "John C. Tully Festschrift".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.