In this work, sensitive detection of dengue virus type 2 E-proteins (DENV-2 E-proteins) was performed in the range of 0.08 pM to 0.5 pM. The successful DENV detection at very low concentration is a matter of concern for targeting the early detection after the onset of dengue symptoms. Here, we developed a SPR sensor based on self-assembled monolayer/reduced graphene oxide-polyamidoamine dendrimer (SAM/NH 2 rGO/PAMAM) thin film to detect DENV-2 E-proteins. Surface characterizations involving X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirms the incorporation of NH 2 rGO-PAMAM nanoparticles in the prepared sensor films. The specificity, sensitivity, binding affinity, and selectivity of the SPR sensor were then evaluated. Results indicated that the variation of the sensing layer due to different spin speed, time incubation, and concentration provided a better interaction between the analyte and sensing layer. The linear dependence of the SPR sensor showed good linearity (R 2 = 0.92) with the lowest detection of 0.08 pM DENV-2 E-proteins. By using the Langmuir model, the equilibrium association constant was obtained at very high value of 6.6844 TM −1 (R 2 = 0.99). High selectivity of the SPR sensor towards DENV-2 E-proteins was achieved in the presence of other competitors. Dengue virus (DENV) is the most common arthropod-borne viral disease that poses a serious global problem. According to World Health Organization (WHO), the dengue virus is the leading cause of death of 22 000, annually. As of today, the need for hospitalization and medical treatment are constantly dense due to the fact that 390 million people in the world are still infected with DENV 1. Its four distinct serotypes (DENV-1. DENV-2, DENV-3, and DENV-4) are capable of causing a range of clinical symptoms ranging from mild fevers to the severe dengue haemorrhagic fever (DHF) and be potentially life-threatening 2-10. Despite its large burden to human health, no effective vaccine and antiviral therapy are available for the virus 11,12. Early treatment for DENV is only by maintaining the body fluid of the patient, as it is critical in fighting the severe symptoms of DENV 13,14. Hence, an early, rapid, and accurate diagnosis at the onset of infection is the demand of the day in the most epidemic settings. Present discoveries in dengue diagnostics that can help in the early diagnosis are targeting the host-virus itself. DENV consists of a single-stranded positive-sense RNA virus that encodes 10 different types of proteins. Seven of
Uric acid (UA), dopamine (DA) and ascorbic acid (AA) exist in the human body as protein metabolism, neurotransmitter and antioxidant, respectively. The abnormal levels of UA, DA and AA could lead to certain diseases and it could be measured and determined using electrochemical sensors. UA, DA and AA have close oxidation potentials and cause overlapping peaks in electrochemical measurements. Researchers have been working on electrode modification by using different materials to overcome those challenges and improve their selectivity, sensitivity and limit of detection. This review aims to highlight the performance of modified electrochemical sensors for detection of UA, DA and AA individually or simultaneously.
A novel optical detection system consisting of combination of uricase/HRP-CdS quantum dots (QDs) for the determination of uric acid in urine sample is described. The QDs was used as an indicator to reveal fluorescence property of the system resulting from enzymatic reaction of uricase and HRP (horseradish peroxidase), which is involved in oxidizing uric acid to allaintoin and hydrogen peroxide. The hydrogen peroxide produced was able to quench the QDs fluorescence, which was proportional to uric acid concentration. The system demonstrated sufficient activity of uricase and HRP at a ratio of 5U:5U and pH 7.0. The linearity of the system toward uric acid was in the concentration range of 125-1000 µM with detection limit of 125 µM.
Dengue viral infection is one of the most common deadliest diseases and has become a recurrent issue for public health in tropical countries. Although the spectrum of clinical diagnosis and treatment have recently been established, the efficient and rapid detection of dengue virus (DENV) during viremia and the early febrile phase is still a great challenge. In this study, a dithiobis (succinimidyl undecanoate, DSU)/amine-functionalized reduced graphene oxide-–polyamidoamine dendrimer (DSU/amine-functionalized rGO–PAMAM) thin film-based surface plasmon resonance (SPR) sensor was developed for the detection of DENV 2 E-proteins. Different concentrations of DENV 2 E-proteins were successfully tested by the developed SPR sensor-based system. The performance of the developed sensor showed increased shift in the SPR angle, narrow full-width–half-maximum of the SPR curve, high detection accuracy, excellent figure of merit and signal-to-noise ratio, good sensitivity values in the range of 0.08–0.5 pM (S = 0.2576°/pM, R2 = 0.92), and a high equilibrium association constant (KA) of 7.6452 TM−1. The developed sensor also showed a sensitive and selective response towards DENV 2 E-proteins compared to DENV 1 E-proteins and ZIKV (Zika virus) E-proteins. Overall, it was concluded that the Au/DSU/amine-functionalized rGO–PAMAM thin film-based SPR sensor has potential to serve as a rapid clinical diagnostic tool for DENV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.