NREL prints on paper that contains recycled content This report is being disseminated by the U.S. Department of Energy (DOE). As such, this document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for fiscal year 2001 (public law 106-554) and information quality guidelines issued by DOE. Though this report does not constitute "influential" information, as that term is defined in DOE's information quality guidelines or the Office of Management and Budget's Information Quality Bulletin for Peer Review, the study was reviewed both internally and externally prior to publication. For purposes of external review, the study benefited from the advice and comments of seven wind industry and trade association representatives, nine consultants, one academic institution, and five U.S. Government employees.
s (NREL's) internal offshore wind database, which is built on internal research and a wide variety of data sources, including peer-reviewed literature, press releases, industry news reports, manufacturer specification sheets, and global offshore wind project announcements. For the database, NREL has verified and sourced data from the following publications:• The 4C Offshore Wind Database (4C Offshore 2020) • Bloomberg New Energy Finance (BNEF) Renewable Energy Project Database (BNEF 2020) • 4C Offshore Vessel Database (4C Offshore 2020) • Wood Mackenzie Wind Turbine Trends (Wood Mackenzie 2020). • Link to 2019 Data Table NREL | 5 Scope and Pipeline Definitions• This work defines the offshore wind project pipeline as potential offshore wind development indicated by developer announcements or by areas made available for offshore wind development by regulatory agencies. • The scope of this report covers the global fleet of projects in the pipeline through December 31, 2019. • This report also covers recent developments and events in the United States through March 31, 2020, projects that have been completed before March 31, 2020, and selectively covers significant industry events through August 2020. • Any estimates of capacities and project dates are shown as reported by project developers or state/federal agencies. • All dollar amounts are reported in 2019 U.S. dollars, unless indicated otherwise.• In this analysis, the U.S. pipeline capacity includes the sum of project-specific capacities and the undeveloped lease area potential capacities based on a project density of 3 megawatts (MW)/km 2 . • For further discussion on methodology and data sources, please refer to the "2018 Offshore Wind Technologies Market Report" (Musial et al. 2019).
This paper describes the development of a process-based and open-source balance of system cost model that provides the capability to evaluate both existing and novel offshore wind technologies. Individual design and installation steps are represented with bottom-up engineering models that compute times and costs associated with the process; furthermore, operational constraints are assigned to each process so that delays caused by weather and presence of marine mammals may be accounted for in the overall project timeline. The model structure, assumptions, inputs, and results are vetted with industry partners and compared against actual projects for validation. Installation times show reasonable agreement with real data. Project cost sensitivities are investigated to compute the system-level impact of different design choices. First, individual vessel efficiencies are computed for varying numbers of installation vessels and weather time series to show the diminishing returns of more than two feeder barges. Then, array cable capital costs and installation times are determined for a representative project with different turbine sizes. These values quantify the cost-benefit tradeoffs and show a net-cost savings of decreasing numbers of turbines, increased turbine spacing, and fewer turbine terminations. These results demonstrate that the balance of system model features the accuracy, functionality, and accessibility to serve as the foundation for a wide range of analyses to identify cost reduction potentials for offshore wind energy in the United States.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.