Context. Galaxies, which often contain ionised gas, sometimes also exhibit a so-called low-ionisation nuclear emission line region (LINER). For 30 years, this was attributed to a central mass-accreting supermassive black hole (more commonly known as active galactic nucleus, AGN) of low luminosity, making LINER galaxies the largest AGN sub-population, which dominate in numbers over higher luminosity Seyfert galaxies and quasars. This, however, poses a serious problem. While the inferred energy balance is plausible, many LINERs clearly do not contain any other independent signatures of an AGN. Aims. Using integral field spectroscopic data from the CALIFA survey, we compare the observed radial surface brightness profiles with what is expected from illumination by an AGN. Methods. Essential for this analysis is a proper extraction of emission lines, especially weak lines, such as Balmer Hβ lines, which are superposed on an absorption trough. To accomplish this, we use the GANDALF code, which simultaneously fits the underlying stellar continuum and emission lines. Results. For 48 galaxies with LINER-like emission, we show that the radial emission-line surface brightness profiles are inconsistent with ionisation by a central point-source and hence cannot be due to an AGN alone. Conclusions. The most probable explanation for the excess LINER-like emission is ionisation by evolved stars during the short but very hot and energetic phase known as post-AGB. This leads us to an entirely new interpretation. Post-AGB stars are ubiquitous and their ionising effect should be potentially observable in every galaxy with the gas present and with stars older than ∼1 Gyr unless a stronger radiation field from young hot stars or an AGN outshines them. This means that galaxies with LINER-like emission are not a class defined by a property but rather by the absence of a property. It also explains why LINER emission is observed mostly in massive galaxies with old stars and little star formation.
The growth of galaxies is one of the key problems in understanding the structure and evolution of the universe and its constituents. Galaxies can grow their stellar mass by accretion of halo or intergalactic gas clouds, or by merging with smaller or similar mass galaxies. The gas available translates into a rate of star formation, which controls the generation of metals in the universe. The spatially resolved history of their stellar mass assembly has not been obtained so far for any given galaxy beyond the Local Group. Here we demonstrate how massive galaxies grow their stellar mass inside-out. We report the results from the analysis of the first 105 galaxies of the largest to date three-dimensional spectroscopic survey of galaxies in the local universe (CALIFA). We apply the fossil record method of stellar population spectral synthesis to recover the spatially and time resolved star formation history of each galaxy. We show, for the first time, that the signal of downsizing is spatially preserved, with both inner and outer regions growing faster for more massive galaxies. Further, we show that the relative growth rate of the spheroidal component, nucleus and inner galaxy, that happened 5-7 Gyr ago, shows a maximum at a critical stellar mass ∼ 7×10 10 M ⊙ . We also find that galaxies less massive than ∼ 10 10 M ⊙ show a transition to outside-in growth, thus connecting with results from resolved studies of the growth of low mass galaxies.
Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details of dust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.
We study the spatial clustering of 538 X-ray selected AGN in the 2 deg 2 XMM-COSMOS field that are spectroscopically identified with I AB < 23 and span the redshift range z = 0.2−3.0. The median redshift and X-ray luminosity of the sample are z = 0.98 and L 0.5−10 = 6.3 × 10 43 erg s −1 , respectively. A strong clustering signal is detected at ∼18σ level, which is the most significant measurement obtained to date for clustering of X-ray selected AGN. By fitting the projected correlation function w(r p ) with a power law on scales of r p = 0.3−40 h −1 Mpc, we derive a best-fit comoving correlation length of r 0 = 8.6 ± 0.5 h −1 Mpc and slope of γ = 1.88 ± 0.07 (Poissonian errors; bootstrap errors are about a factor of 2 larger). An excess signal is observed in the range r p ∼ 5−15 h −1 Mpc, which is due to a large-scale structure at z ∼ 0.36 containing about 40 AGN, a feature which is evident over many wavelengths in the COSMOS field. When removing the z ∼ 0.36 structure or computing w(r p ) in a narrower range around the peak of the redshift distribution (e.g. z = 0.4−1.6), the correlation length decreases to r 0 ∼ 5−6 h −1 Mpc, which is consistent with what is observed for bright optical QSOs at the same redshift. We investigate the clustering properties of obscured and unobscured AGN separately, adopting different definitions for the source obscuration. For the first time, we are able to provide a significant measurement for the spatial clustering of obscured AGN at z ∼ 1. Within the statistical uncertainties, we do not find evidence that AGN with broad optical lines (BLAGN) cluster differently from AGN without broad optical lines (non-BLAGN). Based on these results, which are limited by object statistics, however, obscured and unobscured AGN are consistent with inhabiting similar environments. The evolution of AGN clustering with redshift is also investigated. No significant difference is found between the clustering properties of XMM-COSMOS AGN at redshifts below or above z = 1. The correlation length measured for XMM-COSMOS AGN at z ∼ 1 is similar to that of massive galaxies (stellar mass M > ∼ 3 × 10 10 M ) at the same redshift. This suggests that AGN at z ∼ 1 are preferentially hosted by massive galaxies, as observed both in the local and in the distant (z ∼ 2) Universe. According to a simple clustering evolution scenario, we find that the relics of AGN are expected to have a correlation length as large as r 0 ∼ 8 h −1 Mpc by z = 0, and hence to be hosted by local bright (L ∼ L ) ellipticals. We make use of dark matter halo catalogs from the Millennium simulation to determine the typical halo hosting moderately luminous z ∼ 1 AGN. We find that XMM-COSMOS AGN live in halos with masses M > ∼ 2.5 × 10 12 M h −1 . By combining the number density of XMM-COSMOS AGN to that of the hosting dark matter halos we estimate the AGN duty cycle and lifetimes. We find lifetimes approximately of 1 Gyr for AGN at z ∼ 1, which are longer than those estimated for optically bright QSOs at the same redshift. These long...
We present the first public data release (DR1) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. It consists of science-grade optical datacubes for the first 100 of eventually 600 nearby (0.005 < z < 0.03) galaxies, obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5 m telescope at the Calar Alto observatory. The galaxies in DR1 already cover a wide range of properties in color-magnitude space, morphological type, stellar mass, and gas ionization conditions. This offers the potential to tackle a variety of open questions in galaxy evolution using spatially resolved spectroscopy. Two different spectral setups are available for each galaxy, (i) a low-resolution V500 setup covering the nominal wavelength range 3745-7500 Å with a spectral resolution of 6.0 Å (FWHM), and (ii) a medium-resolution V1200 setup covering the nominal wavelength range 3650-4840 Å with a spectral resolution of 2.3 Å (FWHM). We present the characteristics and data structure of the CALIFA datasets that should be taken into account for scientific exploitation of the data, in particular the effects of vignetting, bad pixels and spatially correlated noise. The data quality test for all 100 galaxies showed that we reach a median limiting continuum sensitivity of 1.0 × 10 −18 erg s −1 cm −2 Å −1 arcsec −2 at 5635 Å and 2.2 × 10 −18 erg s −1 cm −2 Å −1 arcsec −2 at 4500 Å for the V500 and V1200 setup respectively, which corresponds to limiting r and g band surface brightnesses of 23.6 mag arcsec −2 and 23.4 mag arcsec −2 , or an unresolved emission-line flux detection limit of roughly 1 × 10 −17 erg s −1 cm −2 arcsec −2 and 0.6 × 10 −17 erg s −1 cm −2 arcsec −2 , respectively. The median spatial resolution is 3. 7, and the absolute spectrophotometric calibration is better than 15% (1σ). We also describe the available interfaces and tools that allow easy access to this first public CALIFA data at http://califa.caha.es/DR1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.