Hexagonal boron nitride (h-BN) is a 2D, wide band-gap semiconductor that has recently been shown to display bright room-temperature emission in the visible region, sparking immense interest in the material for use in quantum applications. In this work, we study highly crystalline, single atomic layers of chemical vapour deposition (CVD)-grown hexagonal boron nitride and find predominantly one type of emissive state. Using a multidimensional super-resolution fluorescence microscopy technique we simultaneously measure spatial position, intensity and spectral properties of the emitters, as they are exposed to continuous wave illumination over minutes. As well as low emitter heterogeneity, we observe inhomogeneous broadening of emitter linewidths and power law dependency in fluorescence intermittency, this is in striking similarity to previous work on quantum dots. These results show that high control over h-BN growth and treatment can produce a narrow distribution of emitter type, and that surface interactions heavily influence the photodynamics. Furthermore, we highlight the utility of spectrally-resolved wide-field microscopy in the study of optically-active excitons in atomically thin two-dimensional materials.an EPSRC Doctoral Training Award (EP/M506485/1). J.C.
Hexagonal boron nitride (hBN) is a promising host material for room-temperature, tunable solid-state quantum emitters. A key technological challenge is deterministic and scalable spatial emitter localization, both laterally and vertically, while maintaining the full advantages of the 2D nature of the material. Here, we demonstrate emitter localization in hBN in all three dimensions via a monolayer (ML) engineering approach. We establish pretreatment processes for hBN MLs to either fully suppress or activate emission, thereby enabling such differently treated MLs to be used as select building blocks to achieve vertical (z) emitter localization at the atomic layer level. We show that emitter bleaching of ML hBN can be suppressed by sandwiching between two protecting hBN MLs, and that such thin stacks retain opportunities for external control of emission. We exploit this to achieve lateral (x−y) emitter localization via the addition of a patterned graphene mask that quenches fluorescence. Such complete emitter site localization is highly versatile, compatible with planar, scalable processing, allowing tailored approaches to addressable emitter array designs for advanced characterization, monolithic device integration, and photonic circuits.
This paper summarizes the results of Rock‐Eval pyrolysis data of 43 shale samples collected from the latest Ordovician – earliest Silurian (Tanezzuft Formation) interval in the CASP JA‐2 well at Jebel Asba on the eastern margin of the Kufra Basin, SE Libya. The results are supported by analysis of cuttings samples from an earlier well of uncertain origin nearby, referred to here as the UN‐REMSA well. The Tanezzuft Formation succession encountered in the JA‐2 well can be divided into three intervals based on Rock‐Eval pyrolysis data. Shales in the shallowest interval (20 – 46.5 m depth) are altered probably by weathering and lack significant amounts of organic matter. Total organic carbon (TOC) contents of shales from the intermediate interval (46.5 – 68.5 m depth) vary between 0.19 and 0.75 wt%. Most samples in this interval have very limited source rock potential although a few have Hydrogen Index (HI) values up to 378 mg S2/g TOC. Tmax values of 422 – 426°C indicate the organic matter is immature. Shales from the deepest interval (68.5 – 73.9 m depth) are diagenetically altered, perhaps by fluids flowing along a nearby fault or along the contact between the Tanezzuft Formation and the underlying Mamuniyat Formation and apparently lack any organic matter. Cuttings samples from the UN‐REMSA well have TOC contents of 0.48–0.87 wt%, HI values of 242–252 mg S2/g TOC, and Tmax values of 421–425°C. These results offer little support for the presence of the basal Silurian (Tanezzuft Formation) source rock which is prolific elsewhere in SW Libya and eastern Algeria and, together with the overall immaturity of the equivalent section, reduces the probability of finding major oil reserves in the eastern part of the Kufra Basin.
We find that the use of Au substrate allows fast, self-limited WS2 mono-layer growth using a simple sequential exposure pattern of low cost, low toxicity precursors, namely tungsten hexacarbonyl and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.