BackgroundAlthough the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma viruses (HPVs), and Epstein–Barr virus (EBV-also known as human herpes virus type 4). Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence.The evidenceMMTV and human breast cancer—the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer—the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer—the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer—the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal.ConclusionThe influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.
BACKGROUND: There is increasing evidence that high-risk human papilloma virus (HPV) is involved in cancers in addition to cervical cancer. For example, it is generally accepted that HPV has a role in a significant proportion of head and neck tumours, and it has long been hypothesised that hormone dependent oncogenic viruses, such as HPV may have causal roles in some human breast cancers. A number of reports have identified HPV DNA in breast tissue and breast cancer specimens, but these rely on standard polymerase chain reaction (PCR), which is criticised for its propensity for contamination. METHODS: We have used two different technologies, in situ and standard PCR (with sequencing), and histology based on light microscopy. RESULTS: We unambiguously demonstrate the presence of high-risk HPV in the cells of breast cancer specimens and breast cancer cell lines. In addition, we also show that the oncogenic characteristics of HPV associated breast cancer are very similar to HPV-associated cervical cancer. Specifically, that putative koilocytes are present in some HPV associated breast cancers. INTERPRETATION: The above observations indicate a likely causal role for high-risk HPV in human breast cancer and offer the possibility of primary prevention of some breast cancers by vaccination against HPV.
BackgroundThe purpose of this investigation is to determine if Epstein Barr virus (EBV), high risk human papillomavirus (HPV), and mouse mammary tumour viruses (MMTV) co-exist in some breast cancers.Materials and MethodsAll the specimens were from women residing in Australia. For investigations based on standard PCR, we used fresh frozen DNA extracts from 50 unselected invasive breast cancers. For normal breast specimens, we used DNA extracts from epithelial cells from milk donated by 40 lactating women. For investigations based on in situ PCR we used 27 unselected archival formalin fixed breast cancer specimens and 18 unselected archival formalin fixed normal breast specimens from women who had breast reduction surgery. Thirteen of these fixed breast cancer specimens were ductal carcinoma in situ (dcis) and 14 were predominantly invasive ductal carcinomas (idc).ResultsEBV sequences were identified in 68%, high risk HPV sequences in 50%, and MMTV sequences in 78% of DNA extracted from 50 invasive breast cancer specimens. These same viruses were identified in selected normal and breast cancer specimens by in situ PCR. Sequences from more than one viral type were identified in 72% of the same breast cancer specimens. Normal controls showed these viruses were also present in epithelial cells in human milk – EBV (35%), HPV, 20%) and MMTV (32%) of 40 milk samples from normal lactating women, with multiple viruses being identified in 13% of the same milk samples.ConclusionsWe conclude that (i) EBV, HPV and MMTV gene sequences are present and co-exist in many human breast cancers, (ii) the presence of these viruses in breast cancer is associated with young age of diagnosis and possibly an increased grade of breast cancer.
Human papilloma viruses (HPVs) are accepted as being carcinogenic in human cervical and anogenital cancers. The suspicion that HPVs may also have a role in human breast cancer is based on the identification of HPVs in human breast tumours and the immortalisation of normal human breast cells by HPV types 16 and 18. For this investigation, DNA that had been previously extracted and fresh frozen at À701C from 50 unselected invasive ductal breast cancer specimens were screened by polymerase chain reaction (PCR) for HPV type 16, 18 and 33 gene sequences. We show that HPV 18 gene sequences are present in DNA extracted from breast tumours in Australian women. Overall, 24 (48%) of the 50 samples were HPV positive. Overall no correlations with tumour grade, patient survival, steroid receptor status, ERB-2, p53 expression and mutation were observed. Human papilloma viruses may have a role in human breast cancer. We speculate that HPVs may be transmitted by hand from the female perineum to the breast. It is accepted that human papillomavirus (HPV) types 16 and 18 are carcinogenic, and that probably HPV types 31 and 33 are also carcinogenic in human cervical and anogenital cancers (IARC, 1995). The suspicion that HPVs may also have a role in human breast cancer is based on the identification of HPVs in human breast tumours and the immortalisation of normal human breast cells by HPV 16 and 18 (Band et al, 1990;De Villiers et al, 2005).Human papilloma virus 16 has been identified in breast tumours in Italian women and breast tumours in Norwegian women who had previous cervical neoplasia (Hennig et al, 1999). Human papilloma virus 33 has been identified in breast cancer in Chinese and Japanese women (Yu et al, 1999) MATERIALS AND METHODSFor this investigation, DNA that had been previously extracted and fresh frozen at À70 O C from 50 unselected invasive ductal breast cancer specimens were screened by polymerase chain reaction (PCR) for HPV type 16, 18 and 33 gene sequences. The DNA samples were amplified twice per sample using GenomiPhit DNA Amplification Kit (Amersham Biosciences). The DNA quality was confirmed by PCR, amplifying 268 bp of the b-globin gene. These samples were then screened for the presence of HPV by PCR using primers that could detect 140 bp in the E6 region of HPV 16, 18 and 33 (Yu et al, 1999). DNA extracted from cervical cancer cell lines HeLa and SiHa cells were used as positive controls for HPV 18 and 16, respectively. Plasmid plink 322 HPV 33 was used as a positive control for HPV 33. DNA from leukaemia Raji cells was used a negative control. The PCR products were separated on 7.6% PAGE and visualised by SYBR Green I (Molecular Probes). The screening was repeated five times using different batches of DNA samples amplified by the GenomiPhit DNA Amplification Kit (Amersham Biosciences). Human papilloma virus-positive samples were sequenced (there was sufficient material to sequence 18 of 24 HPV-positive samples).Grade of tumour and survival of patients were known for each sample. Screening for exons 5...
The presence of both HPV and EBV gene sequences in most of the same normal, benign, and malignant prostate specimens is particularly noteworthy because of recent experimental evidence demonstrating that EBV and HPV can collaborate to increase proliferation of cultured cervical cells. Because the presence of EBV and HPV in normal, benign, and malignant prostate tissues appears to be ubiquitous, it is possible that they are harmless. On the other hand HPV type 18 in particular, has high oncogenic potential and may be associated with some prostate cancers. The identification of HPV associated koilocytes in prostate cancer specimens is an indication of HPV infection and potential oncogenic influences of human papillomavirus in prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.