Although it is generally accepted that adverse forces can impair osseointegration, the mechanism of this complication is unknown. In this study, static and dynamic loads were applied on 10 mm long implants (Brånemark System, Nobel Biocare, Sweden) installed bicortically in rabbit tibiae to investigate the bone response. Each of 10 adult New Zealand black rabbits had one statically loaded implant (with a transverse force of 29.4 N applied on a distance of 1.5 mm from the top of the implant, resulting in a bending moment of 4.4 Ncm), one dynamically loaded implant (with a transverse force of 14.7 N applied on a distance of 50 mm from the top of the implant, resulting in a bending moment of 73.5 Ncm, 2.520 cycles in total, applied with a frequency of 1 Hz), and one unloaded control implant. The loading was performed during 14 days. A numerical model was used as a guideline for the applied dynamic load. Histomorphometrical quantifications of the bone to metal contact area and bone density lateral to the implant were performed on undecalcified and toluidine blue stained sections. The histological picture was similar for statically loaded and control implants. Dense cortical lamellar bone was present around the marginal and apical part of the latter implants with no signs of bone loss. Crater-shaped bone defects and Howship's lacunae were explicit signs of bone resorption in the marginal bone area around the dynamically loaded implants. Despite those bone defects, bone islands were present in contact with the implant surface in this marginal area. This resulted in no significantly lower bone-to-implant contact around the dynamically loaded implants in comparison with the statically loaded and the control implants. However, when comparing the amount of bone in the immediate surroundings of the marginal part of the implants, significantly (P < 0.007) less bone volume (density) was present around the dynamically loaded in comparison with the statically loaded and the control implants. This study shows that excessive dynamic loads cause crater-like bone defects lateral to osseointegrated implants.
Background and Aims
To review the regenerative technologies used in bone regeneration: bone grafts, barrier membranes, bioactive factors and cell therapies.
Material and Methods
Four background review publications served to elaborate this consensus report.
Results and Conclusions
Biomaterials used as bone grafts must meet specific requirements: biocompatibility, porosity, osteoconductivity, osteoinductivity, surface properties, biodegradability, mechanical properties, angiogenicity, handling and manufacturing processes. Currently used biomaterials have demonstrated advantages and limitations based on the fulfilment of these requirements. Similarly, membranes for guided bone regeneration (GBR) must fulfil specific properties and potential biological mechanisms to improve their clinical applicability. Pre‐clinical and clinical studies have evaluated the added effect of bone morphogenetic proteins (mainly BMP‐2) and autologous platelet concentrates (APCs) when used as bioactive agents to enhance bone regeneration. Three main approaches using cell therapies to enhance bone regeneration have been evaluated: (a) “minimally manipulated” whole tissue fractions; (b) ex vivo expanded “uncommitted” stem/progenitor cells; and (c) ex vivo expanded “committed” bone‐/periosteum‐derived cells. Based on the evidence from clinical trials, transplantation of cells, most commonly whole bone marrow aspirates (BMA) or bone marrow aspirate concentrations (BMAC), in combination with biomaterial scaffolds has demonstrated an additional effect in sinus augmentation and horizontal ridge augmentation, and comparable bone regeneration to autogenous bone in alveolar cleft repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.