. A specific warming period started around 1980 and continues until the present. This warming also occurred in the Baltic Sea catchment, which lies between maritime temperate and continental subarctic climate zones. A detailed study of climate variability and the associated impact on the Baltic Sea area for the period 1958 to 2009 revealed that the recent changes in the warming trend are associated with changes in large-scale atmospheric circulation over the North Atlantic. The number and pathways of deep cyclones changed considerably in line with an eastward shift of the North Atlantic Oscillation centers of action. There is a seasonal shift of strong wind events from autumn to winter and early spring. Since the late 1980s, the winter season (DJFM, i.e. December to March) of the Baltic Sea area has tended to be warmer, with less ice coverage and warmer sea surface temperatures, especially pronounced in the northern parts of the Baltic Sea. There is a tendency for increased cloud cover and precipitation in regions that are exposed to westerlies and less cloud coverage at the leeward side of the Scandinavian Mountains and over the Baltic Sea Basin. KEY WORDS: Baltic Sea · NAO · Climate variabilityResale or republication not permitted without written consent of the publisher OPEN PEN
Abstract. The Agulhas Current, the western boundary current of the South Indian Ocean, has been shown to play an important role in the connectivity between the Indian and Atlantic oceans. The greater Agulhas Current system is highly dominated by mesoscale dynamics. To investigate their influence on the regional and global circulations, a family of high-resolution ocean general circulation model configurations based on the NEMO code has been developed. Horizontal resolution refinement is achieved by embedding “nests” covering the South Atlantic and the western Indian oceans at 1/10∘ (INALT10) and 1/20∘ (INALT20) within global hosts with coarser resolutions. Nests and hosts are connected through two-way interaction, allowing the nests not only to receive boundary conditions from their respective host but also to feed back the impact of regional dynamics onto the global ocean. A double-nested configuration at 1/60∘ resolution (INALT60) has been developed to gain insights into submesoscale processes within the Agulhas Current system. Large-scale measures such as the Drake Passage transport and the strength of the Atlantic meridional overturning circulation are rather robust among the different configurations, indicating the important role of the hosts in providing a consistent embedment of the regionally refined grids into the global circulation. The dynamics of the Agulhas Current system strongly depend on the representation of mesoscale processes. Both the southward-flowing Agulhas Current and the northward-flowing Agulhas Undercurrent increase in strength with increasing resolution towards more realistic values, which suggests the importance of improving mesoscale dynamics as well as bathymetric slopes along this narrow western boundary current regime. The exploration of numerical choices such as lateral boundary conditions and details of the implementation of surface wind stress forcing demonstrates the range of solutions within any given configuration.
We investigate the quality of simulating tropical Atlantic (TA) sector climatology and interannual variability in integrations of the Kiel Climate Model (KCM) with varying atmosphere model resolution. The ocean model resolution is kept fixed. A reasonable simulation of TA sector annual-mean climate, seasonal cycle and interannual variability can only be achieved at sufficiently high horizontal and vertical atmospheric resolution. Two major reasons for the improvements are identified. First, the western equatorial Atlantic westerly surface wind bias in spring can be largely eliminated, which is explained by a better representation of meridional and especially vertical zonal momentum transport. The enhanced atmospheric circulation along the equator in turn greatly improves the thermal structure of the upper equatorial Atlantic with much reduced warm sea surface temperature (SST) biases. Second, the coastline in the southeastern TA and steep orography are better resolved at high resolution, which improves wind structure and in turn reduces warm SST biases in the Benguela upwelling region. The strongly diminished wind and SST biases at high atmosphere model resolution allow for a more realistic latitudinal position of the Intertropical Convergence Zone. Resulting stronger cross-equatorial winds, in conjunction with a shallower thermocline, enable a rapid cold tongue development in the eastern TA in boreal spring. This enables simulation of realistic interannual SST variability and its seasonal phase locking in the KCM, which primarily is the result of a stronger thermocline feedback. Our findings suggest that enhanced atmospheric resolution, both vertical and horizontal, could be a key to achieving more realistic simulation of TA climatology and interannual variability in climate models.
A long‐standing problem in climate modeling is the inaccurate simulation of tropical Atlantic (TA) sea surface temperature (SST), known as the TA SST bias. It has far‐reaching consequences for climate prediction in that area as it goes along, among others, with erroneous precipitation patterns. We show that the TA SST bias can be largely reduced by increasing both the atmospheric horizontal and vertical resolutions in a climate model. At high horizontal resolution, enhanced vertical resolution is indispensable to substantially improve the simulation of TA SST by enhancing surface wind stress. This also reduces biases in the upper ocean thermal structure and precipitation patterns. Although, enhanced horizontal resolution alone leads to some improvement in the mean climate, typical bias patterns characterized by a reversed zonal SST gradient at the equator and too warm SST in the Benguela upwelling region are mostly unchanged at a coarser vertical resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.