The development of tissue culture systems in duckweeds has, to date, been limited to species of the genus Lemna. We report here the establishment of an efficient tissue culture cycle (callus induction, callus growth and plant regeneration) for Spirodela oligorrhiza Hegelm SP, Spirodela punctata 8717 and Lemna gibba var. Hurfeish. Significant differences were found among the three duckweed species pertaining to carbohydrate and phytohormone requirements for callus induction, callus growth and frond regeneration. In vitro incubation with poorly assimilated carbohydrates such as galactose ( S. oligorrhiza SP and L. gibba var. Hurfeish) and sorbitol ( S. punctata 8717) as sole carbon source yielded high levels of callus induction on phytohormone-supplemented medium. Sorbitol is required for optimal callus growth of S. oligorrhiza SP and S. punctata 8717, while sucrose is required for callus growth of L. gibba var. Hurfeish. Sucrose either alone ( S. oligorrhiza SP, L. gibba var. Hurfeish) or in addition to sorbitol ( S. punctata 8717) is required for frond regeneration.
The most devastating disease currently threatening to destroy the banana industry worldwide is undoubtedly Sigatoka Leaf spot disease caused by Mycosphaerella fijiensis. In this study, we developed a transformation system for banana and expressed the endochitinase gene ThEn-42 from Trichoderma harzianum together with the grape stilbene synthase (StSy) gene in transgenic banana plants under the control of the 35S promoter and the inducible PR-10 promoter, respectively. The superoxide dismutase gene Cu,Zn-SOD from tomato, under control of the ubiquitin promoter, was added to this cassette to improve scavenging of free radicals generated during fungal attack. A 4-year field trial demonstrated several transgenic banana lines with improved tolerance to Sigatoka. As the genes conferring Sigatoka tolerance may have a wide range of anti-fungal activities we also inoculated the regenerated banana plants with Botrytis cinerea. The best transgenic lines exhibiting Sigatoka tolerance were also found to have tolerance to B. cinerea in laboratory assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.