The present work studies the tungsten carbide (WC/C) coatings deposited by using Plasma Enhanced Chemical Vapor Deposition (PECVD), with and without gases of Ar and N2. Volatile hexacarbonyl of W was used as a precursor. Their mechanical and tribological properties were evaluated. The following values were obtained by using deposition process with N2 of HIT = 19.7 ± 4.1 GPa, EIT = 221 ± 2.1 GPa, and coefficient of friction (COF) = 0.35 ± 0.09. Secondly, deposition without the aforementioned gas obtained values of HIT = 20.9 ± 2 GPa, EIT = 292 ± 20 GPa, and COF = 0.69 ± 0.05. WC/C coatings were annealed at temperatures of 200, 500, and 800 °C, respectively. Evaluated factors include the introduced properties, the observed morphology, and the structural composition of WC/C coatings. The process of degradation was carried out by using various velocities, depending on used gases and annealing temperatures.
This study investigates how layer deposition in printing 3D models made of polyetherimide (PEI) using the fused filament fabrication (FFF) technique affects resistance of these models to abrasive wear. Samples made by additive manufacturing with different setting of build orientation and path generation strategy of extruded fibers were used in the experiment. The experiments were conducted on a tribometer according to the ASTM G65-16 standard. The friction force, normal force, and temperature in the contact area during the tribometer operation were measured using a strain gauge sensor. The tribometer allowed us to perform the tribological experiments using a rubber-coated or a metal disc without a lubricant in the so-called “dry” operation. Following the ASTM G65-16 standard, a rubber-coated disc and Fe3Al2 (SiO4)3 garnet abrasive were used for the wear resistance tests. The analysis of experimental data showed correlations among orientation selection, the strategy of layer deposition by the FFF technique, and the surface life in terms of abrasive wear. The results of this research also showed the suitability of the chosen building orientation and deposition strategy for part production by additive manufacturing, depending on the required tribological properties, such as the coefficient of friction (yield path) and wear behavior. Based on the results of the study, it is concluded that continuity of wear and friction force depends on the path traveled under the model production orientation. The size of wear (material loss) ranged from 0.451–0.809%. It was shown that the weight loss of the sample under loading was greater, on average, with the chosen fiber orientation strategy in the Z direction than in the X direction.
Abstract:The optimization of a car body in terms of cost can be achieved by using different materials in various positions of the car in order to utilize specific properties of each different material. Resistance spot welding is the most used method of joining in car body production, but it is not always easy or even possible to join some combination of materials by this method. Clinching is an alternative method to spot welding, as a combination of drawing and forming. The research is focused on the evaluation of clinched joints' properties using shearing test and metallographic observation of material structure.
In this work, the influence of material models used in the FEM simulation on the springback prediction is investigated. The interest of this paper is to extend the knowledge base regarding springback predictions in numerical simulation. The springback effect of a V-shaped sheet metal part made of TRIP steel, with a thickness of 0.75 mm was investigated. The bending angle was set to 90°. In the numerical simulation, Hill48 and Barlat yield criteria were used in combination with Ludwik's and Swift's hardening models. Achieved data from the numerical simulations were compared and evaluated with experimental test results. The experimental results showed the relation between springback and calibration force. The effect of specimen cut direction on the springback was smaller in comparison with the calibration force. The numerical results of the springback were not identical with the experimentally achieved springback values in most cases. Particularly, when a calibration force of 1 800 N was used in the simulation. The simulation results showed a good correlation between experimental and numerical results, when Hill48 and Barlat yield criteria were used in combination with Ludwik hardening law and calibration force F with the value 900 N was applied.
The springback in the sheet metal forming process refers to the change of shape after the load removal. It is usually undesirable, causing problems in the subsequent forming operations, in the assembly and negatively affects the quality of the final product. Numerical prediction of the springback with the use of the numerical simulation is crucial for the reduction of forming tool try-outs, reducing manufacturing costs and increasing the accuracy of the stamped part. In this work, numerical simulation was used for the springback prediction of the hat-shaped part made of advanced high-strength dual-phase steel HCT600X+Z. These numerical predictions were performed with the use of various combinations of material models to try to improve the prediction results. Furthermore, this work includes the proposed springback reduction measure. The reduction of the springback was achieved by the tool design which includes a counterpunch. The springback analysis was carried out in the side view of the formed part; the springback prediction results were compared with the experimental values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.