This paper characterizes three parasitic capacitances in copper-foiled medium-voltage inductors. It is found that the conventional modeling method overlooks the effect of the fringe field, which leads to inaccurate modeling of parasitic capacitances in copper-foiled inductors. To address this problem, the parasitic capacitances contributed by the fringe electrical field is identified first, and a physics-based analytical modeling method for the parasitic capacitances contributed by the fringe electrical field is proposed, which avoids using any empirical equations. The total parasitic capacitances are then derived for three different cases with three different core potentials, from which a three-terminal equivalent circuit is derived, and thus, the parasitic capacitances in copper-foiled inductors are explicitly identified. The calculated results show a close agreement with the measured capacitance by using an impedance analyzer. Two recommendations for reducing the parasitic capacitances in copper-foiled inductors are given in this paper.
This paper proposes a physics-level modeling method for analyzing the primary to secondary-side (commonmode) parasitic capacitance of the transformer for the Mediumvoltage SiC MOSFETs gate drivers. The lumped circuit-based physics-model of the turn-to-turn capacitance, turn-to-core capacitance, and self capacitance of the core are derived, and it is found that the turn-to-core capacitance mainly contributes to the total equivalent parasitic common-mode capacitance. The measured common-mode impedance of the transformer shows high agreements with the calculated value, where the accuracy of the proposed modeling method can be proved based on the experimental results.
This paper characterizes three parasitic capacitances in copper-foiled medium-voltage inductors. It is found that the conventional modeling method overlooks the effect of the fringe field, which leads to inaccurate modeling of parasitic capacitances in copper-foiled inductors. To address this problem, the parasitic capacitances contributed by the fringe field is identified first, and a physics-based analytical modeling method for the parasitic capacitances contributed by the fringe field is proposed, which avoids using any empirical equations. The total parasitic capacitances are then derived for three different cases with three different core potentials, from which a three-terminal equivalent circuit is derived, and thus, the parasitic capacitances in copper-foiled inductors are explicitly identified. The calculated results show a close agreement with the measured capacitance by using an impedance analyzer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.