The results enable an enhanced longitudinal assessment of cognitive functions in different clinical settings, provide comparability, and offer more flexibility for determination of patient status. An extension of the current study might be the transfer of the method presented to other cognitive or affective domains, such as memory and depression.
The Wisconsin Card Sorting Test (WCST) represents a widely utilized neuropsychological assessment technique for executive function. This meta-analysis examined the discriminant validity of the WCST for the assessment of mental shifting, considered as an essential subcomponent of executive functioning, against traditional psychometric intelligence tests. A systematic search was conducted, resulting in 72 neuropsychological samples for the meta-analysis of relationships between WCST scores and a variety of intelligence quotient (IQ) domains. The study revealed low to medium-sized correlations with IQ domains across all WCST scores that could be investigated. Verbal/crystallized IQ and performance/fluid IQ were indistinguishably associated with WCST scores. To conclude, the WCST assesses cognitive functions that might be partially separable from common conceptualizations of intelligence. More vigorous initiatives to validate putative indicators of executive function against intelligence are required.
Motor imagery (MI) practice in combination with neurofeedback (NF) is a promising supplement to facilitate the acquisition of motor abilities and the recovery of impaired motor abilities following brain injuries. However, the ability to control MI NF is subject to a wide range of inter-individual variability. A substantial number of users experience difficulties in achieving good results, which compromises their chances to benefit from MI NF in a learning or rehabilitation context. It has been suggested that context factors, that is, factors outside the actual motor task, can explain individual differences in motor skill acquisition. Retrospective declarative interference and sleep have already been identified as critical factors for motor execution (ME) and MI based practice. Here, we investigate whether these findings generalize to MI NF practice.Three groups underwent three blocks of MI NF practice each on two subsequent days. In two of the groups, MI NF blocks were followed by either immediate or delayed declarative memory tasks. The control group performed only MI NF and no specific interference tasks. Two of the MI NF blocks were run on the first day of the experiment, the third in the morning of the second day. Significant within-block NF gains in mu and beta frequency event-related desynchronization (ERD) where evident for all groups. However, effects of sleep on MI NF ERD were not found. Data did also not indicate an impact of immediate or delayed declarative interference on MI NF ERD.Our results indicate that effects of sleep and declarative interference context on ME or MI practice cannot unconditionally be generalized to MI NF skill acquisition. The findings are discussed in the context of variable experimental task designs, inter-individual differences, and performance measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.