Metal nanowire (MNW)‐based transparent electrode technologies have significantly matured over the last decade to become a prominent low‐cost alternative to indium tin oxide (ITO). Beyond reaching the same level of performance as ITO, MNW networks offer additional advantages including flexibility and low materials cost. To facilitate adoption of MNW networks as a replacement to ITO, they must overcome their inherent stability issues while maintaining their properties and cost‐effectiveness. Herein, the fundamental failure mechanisms of MNW networks are discussed in detail. Recent strategies to computationally model MNWs from the nano‐ to macroscale and suggest future work to capture dynamic failure to unravel mechanisms that account for convolution of the failure modes are highlighted. Strategies to characterize MNW network failure in situ and postmortem are also discussed. In addition, recent work about improving the stability of MNW networks via encapsulation is discussed. Lastly, a perspective is given on how to frame the requirements of MNW‐encapsulant hybrids with reference to their target applications, namely: solar cells, transparent film heaters, sensors, and displays. A cost analysis to comment on the feasibility of implementing MNW hybrids is provided, and critical areas to focus on for future work on MNW networks are suggested.
Catalysis is one of the most sophisticated areas of materials research that encompasses a diverse set of materials and phenomena occurring on multiple length and time scales. Designing catalysts that can be broadly applied toward global energy and environmental challenges requires the development of universal frameworks for complex catalytic systems through rational and independent (or quasi-independent) optimization of multiple structural and compositional features. Toward addressing this goal, a modular platform is presented in which sacrificial organic colloids bearing catalytic nanoparticles on their surfaces self-assemble with matrix precursors, simultaneously structuring the resulting porous networks and fine-tuning the locations of catalyst particles. This strategy allows combinatorial variations of the material building blocks and their organization, in turn providing numerous degrees of freedom for optimizing the material's functional properties, from the nanoscale to the macroscale. The platform enables systematic studies and rational design of efficient and robust systems for a wide range of catalytic and photocatalytic reactions, as well as their integration into industrial and other real-life environments.
Electrically conductive membranes are a promising avenue to reduce water treatment costs due to their ability to minimize the detrimental impact of fouling, to degrade contaminants, and to provide other additional benefits during filtration. Here, we demonstrate the facile and low-cost fabrication of electrically conductive membranes using laser-reduced graphene oxide (GO). In this method, GO is filtered onto a poly(ether sulfone) membrane support before being pyrolyzed via laser into a conductive film. Laser-reduced GO composite membranes are shown to be equally as permeable to water as the underlying membrane support and possess sheet resistances as low as 209 Ω/□. Application of the laser-reduced GO membranes is demonstrated through greater than 97% removal of a surrogate water contaminant, 25 μM methyl orange dye, with an 8 V applied potential. Furthermore, we show that laser-reduced GO membranes can be further tuned with the addition of p-phenylenediamine binding molecules to decrease the sheet resistance to 54 Ω/□.
Solution-processed silver nanowire (AgNW) networks are promising as next-generation transparent conductive electrodes due to their excellent optoelectronic properties, mechanical flexibility, as well as low material and processing costs. However, AgNWs are prone to thermally induced fragmentation and chemical degradation, necessitating a conformal protective coating typically achieved by low-throughput methods such as sputtering or atomic layer deposition. Herein, we report a facile all-solution-based approach to synthesize a conformally coated AgNW network by nanosized reduced graphene oxide R(nGO). In this method, probe ultrasonication is used to obtain nanosized GO, which is coated on AgNWs by a layer-by-layer approach and then chemically treated to form R(nGO)/AgNW. We show that our transparent electrode has excellent transmittance (85–92%) and sheet resistance (17.5 Ω/sq), combined with outstanding thermal and electrothermal stability, thanks to the conformal nature of the R(nGO) film, and demonstrate its use as a transparent heater with a high maximum temperature. This, in conjunction with improved long-term chemical and mechanical bending stability of R(nGO)/AgNW, indicates that our newly developed process represents an effective and low-cost strategy to improve the overall operational resilience of metal nanowire-based transparent conductive electrodes.
Electrically conductive membranes have shown tremendous promise in the treatment of water, due to their ability to overcome certain limitations that traditional membranes face. Membranes that can simultaneously serve as...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.