TRÉPREAU rn, qui sont de rang maximal. Ce problème, considéré d'abord, dans cette généralité, par Chern et Griffiths [3]-[4], a été récemment résolu pour r = 1 dans Trépreau [22]. Le cas général fait l'objet d'un article en cours de préparation, qui utilise le résultat principal obtenu ici, voir Pirio-Trépreau [19].
Le 5-tissu de Bol, découvert en 1936, est resté longtemps le seul exemple avéré de tissu plan exceptionnel. En 2002, Robert [16] et Pirio [13] ont trouvé un 9-et des 6-et 7-tissus plans exceptionnels, en relation avec l'équation fonctionnelle de Spence-Kummer du trilogarithme. Plus récemment encore, Pirio [14] a découvert trois nouveaux 5-tissus exceptionnels, très simples. Dans cet article, nous présentons une famille à un paramètre de 5-tissus plans exceptionnels, qui contient ces derniers comme cas limites.Dans leur présentation la plus naturelle, les tissus de cette famille sont composés d'un système harmonique de quatre faisceaux de droites parallèles, définis respectivemant par les équations {x = cte}, {y = cte}, {x + y = cte} et {x − y = cte}, et d'un feuilletage dont les feuilles sont les courbes de niveau de la fonction sn k x sn k y, où sn k est une fonction elliptique de Jacobi.
It is well known from the theory of linear partial differential equations in spaces of smooth functions and distributions, see HSrmander [11], [12], that the solvability of a differential equation is related to the non-existence of a solution of the homogeneous adjoint equation with compact singular support, and that this may be used to obtain semi-global existence results from the microlocal study of the adjoint o1> erator. In this paper we show that a similar strateg5 ~ is possible in the framework of hyperfunctions. Actually, we shall consider in this paper the more general case of a system of differential equations without compatibility conditions in the framework of hyperfunctions on a maximally real manifold in C ~ with low regularity.The first section of the paper may be considered as a continuation of Sehapira [26], [27], in which it was shown how functional analysis can be used in the hyperfunction theory of differential operators. We first recall the fact that hyperfunetion solvability is insensitive to the geometry of the boundary of the domain (Theorem 1.2) and show that finite dimensional obstruction to solvability never occurs (Theorem 1.3). Then we characterize the hyperfunction solvability of a differential operator in terms of the validity of an a priori inequality for the adjoint operator (Theorem 1.4). The main result of this section is perhaps Theorem 1.6 which states that the non-confinement of analytic singularities for the adjoint operator is a sufficient condition for the hyperfunetion solvability. This is similar to Theorem 1.2.4 of H6rmander [11].In Section 2 we give several examples of how the functional analysis statements of Section 1 apply to obtain seemingly new existence theorems or new proofs of classical existence theorems, as corollaries of already available, sometimes deep, microlocal results. Such topics as holonomic systems, hypo-analytic structures or analytic differential equations of principal type on R" are touched on. Theorem 2.2(1) Partially supported by CNPq, Brasil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.