Germline cell death in Drosophila oogenesis is controlled by distinct signals. The death of nurse cells in late oogenesis is developmentally regulated, whereas the death of egg chambers during mid-oogenesis is induced by environmental stress or developmental abnormalities. P-element insertions in the caspase gene dcp-1 disrupt both dcp-1 and the outlying gene, pita, leading to lethality and defective nurse cell death in late oogenesis. By isolating single mutations in the two genes, we have found that the loss of both genes contributes to this ovary phenotype. Mutants of pita, which encodes a C2H2 zinc-finger protein, are homozygous lethal and show dumpless egg chambers and premature nurse cell death in germline clones. Early nurse cell death is not observed in the dcp-1/pita double mutants, suggesting that dcp-1+ activity is required for the mid-oogenesis cell death seen in pita mutants. dcp-1 mutants are viable and nurse cell death in late oogenesis occurs normally. However, starvation-induced germline cell death during mid-oogenesis is blocked, leading to a reduction and inappropriate nuclear localization of the active caspase Drice. These findings suggest that the combinatorial loss of pita and dcp-1 leads to the increased survival of abnormal egg chambers in mutants bearing the P-element alleles and that dcp-1 is essential for cell death during mid-oogenesis.
Lidar is becoming increasingly popular across the United States, and state transportation agencies are adopting this technology for practical uses in transportation-related applications. This trend can be seen in the growing number of agencies acquiring lidar scanners and contracting lidar services. The primary factors behind this trend are that (a) surveyors, engineers, and technicians are becoming more educated about and increasingly open to lidar and its applications and (b) lidar is potentially more cost-effective than traditional surveying technologies. Lidar can provide transportation agencies with the benefits of safety, data collection productivity, cost-effectiveness, applicability, high levels of detail, and technological advancement. Many of the more practical uses and benefits of lidar have come to fruition in recent years, and transportation agencies have been more open to its use. However, little more than anecdotal evidence supports when a specific lidar platform should be applied for various applications rather than a traditional surveying method. Decision makers in geomatic and surveying departments that use lidar must regularly weigh the options of which surveying method to use for specific projects and base decisions on performance tradeoffs. The methodology presented in this paper aims to provide guidance on how agencies may determine whether lidar can be practically used within their organizations. The aspects and performance measures outlined for effective deployment of lidar equipment or contracted services should be systematically considered.
In October 2011, the North Carolina Department of Transportation conducted a roadway review with a randomly recruited sample of North Carolina residents and community leaders. More than 300 people from 61 communities participated in the surveys, which were held in six locations: Asheville, Burlington, Charlotte, Jonesville, Rocky Mount, and Wilmington. The purpose of the roadway review was twofold: to determine the expectations for the condition of North Carolina highways and to identify the features that North Carolinians believe are most important on different types of highways. Surveys were completed during both daytime and nighttime hours and covered many roadway maintenance aspects, such as pavement, landscaping and mowing practices, signage, retroreflectivity, and shoulders. Regression equations are also provided to predict the overall satisfaction of condition, safety, and appearance by each individual roadway type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.